Metastatic Pancreatic Cancer
Systemic Treatment and Potential Advances

Dr Kate Young
Clinical Research Fellow, GI Unit
The Royal Marsden
London, UK

PCUK 2019 National Study Day
Overview

• Current Therapeutic Options
 1st Line
 2nd Line

• Molecular Profiling and Advances

• Case
1st Line Chemotherapy for Metastatic Disease
5-fluorouracil

- 1950s: 5-FU mainstay treatment
- Survival Benefit of ~3 months vs. BSC
- Multiple combinations attempted
 - Doxorubicin
 - Mitomycin C
 - Cyclophosphamide
 - Methotrexate
 - Vincristine
 - Cisplatin

All increased toxicity with no survival benefit

Moertel CG. Chemotherapy of gastrointestinal cancer
Gemcitabine

• First drug to increase OS vs. 5-FU
• Improved clinical benefit rate (24% vs. 4%)
• Improved mOS (5.6 vs. 4.4 months) and 1 year survival rate (18% vs. 2%)
• Improved Response Rate (5% vs. 0%)

1990s-2010s multiple trials attempted to improve on single agent gemcitabine

<table>
<thead>
<tr>
<th>Chemo</th>
<th>No. Pts</th>
<th>PFS (months)</th>
<th>OS (months)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gem+ Capecitabine</td>
<td>533</td>
<td>13.9% vs. 8.4% PFS rate at 12 months (p=0.004)</td>
<td>11 vs. 9.2 (p=0.038)</td>
<td>Cunningham et al. (2009)</td>
</tr>
<tr>
<td>Gem+ Cisplatin</td>
<td>400</td>
<td>3.9 vs. 3.8 (p=0.38)</td>
<td>8.3 vs. 7.2 (p=0.80)</td>
<td>Colucci et al. (2010)</td>
</tr>
<tr>
<td>Gem+ Oxaliplatin</td>
<td>313</td>
<td>5.8 vs. 3.7 (p=0.04)</td>
<td>9 vs. 7.1 (p=0.13)</td>
<td>Louvet et al. (2005)</td>
</tr>
<tr>
<td>Gem+ Irinotecan</td>
<td>342</td>
<td>3.5 vs. 3 (p=0.352)</td>
<td>6.3 vs. 6.6 (p=0.789)</td>
<td>Rocha Lima et al. (2004)</td>
</tr>
<tr>
<td>Gem+ Pemetrexed</td>
<td>565</td>
<td>3.9 vs. 3.3 (p=0.1109)</td>
<td>6.2 vs. 6.3 (p=0.8477)</td>
<td>Oettle et al. (2005)</td>
</tr>
</tbody>
</table>
Meta-analysis of clinical studies

Overall survival analysis:

Gemcitabine versus Gemcitabine-based combination (Combo) chemotherapy,

HR= 0.91, 95% CI 0.85-0.97

Sultana et al. JCO 2007;25:2607-2615
FOLFIRINOX

- Phase III ACCORD study 1st meaningful survival benefit over single agent gemcitabine
- FOLFIRINOX vs. Gemcitabine
- n= 342
- Primary endpoint= OS

Overall Survival and Progression-free Survival

mOS FOLFIRINOX 11.1 months
mOS Gemcitabine 6.8 months

RR FOLFIRINOX 31.6%
RR Gemcitabine 9.4%

mPFS FOLFIRINOX 6.4 months
mPFS Gemcitabine 3.3 months
Most Common Grade 3 or 4 Adverse Events

<table>
<thead>
<tr>
<th>Event</th>
<th>FOLFIRINOX (N = 171)</th>
<th>Gemcitabine (N = 171)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutropenia</td>
<td>75/164 (45.7)</td>
<td>35/167 (21.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>9/166 (5.4)</td>
<td>2/169 (1.2)</td>
<td>0.03</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>15/165 (9.1)</td>
<td>6/168 (3.6)</td>
<td>0.04</td>
</tr>
<tr>
<td>Anemia</td>
<td>13/166 (7.8)</td>
<td>10/168 (6.0)</td>
<td>NS</td>
</tr>
<tr>
<td>Nonhematologic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>39/165 (23.6)</td>
<td>30/169 (17.8)</td>
<td>NS</td>
</tr>
<tr>
<td>Vomiting</td>
<td>24/166 (14.5)</td>
<td>14/169 (8.3)</td>
<td>NS</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>21/165 (12.7)</td>
<td>3/169 (1.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Sensory neuropathy</td>
<td>15/166 (9.0)</td>
<td>0/169</td>
<td><0.001</td>
</tr>
<tr>
<td>Elevated level of alanine aminotransferase</td>
<td>12/165 (7.3)</td>
<td>35/168 (20.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Thromboembolism</td>
<td>11/166 (6.6)</td>
<td>7/169 (4.1)</td>
<td>NS</td>
</tr>
</tbody>
</table>

* Events listed are those that occurred in more than 5% of patients in either group. NS denotes not significant.
Quality of Life

Gourgou-Bourgade et al. JCO 2012
Desmoplastic Stroma in PDAC thought to contribute to drug resistance

\(Nab \)-Paclitaxel = nanoparticle albumin bound

Increases bio-availability of paclitaxel

Phase III MPACT study randomised 861 patients to gemcitabine alone or gemcitabine + nab-paclitaxel

\[\text{Gemcitabine + } Nab\text{-Paclitaxel}\]

Survival and Progression-free Survival

mOS Gem+ Nab–Paclitaxel 8.5
mOS Gem 6.7

RR Gem+ Nab–Paclitaxel 23%
RR Gem 7%

mPFS Gem+ Nab–Paclitaxel 5.5
mPFS Gem 3.7
Common Adverse Events of Grade 3 or Higher and Growth-Factor Use

<table>
<thead>
<tr>
<th>Event</th>
<th>nab-Paclitaxel plus Gemcitabine (N=421)</th>
<th>Gemcitabine Alone (N=402)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse event leading to death — no. (%)</td>
<td>18 (4)</td>
<td>18 (4)</td>
</tr>
<tr>
<td>Grade ≥3 hematologic adverse event — no./total no. (%)†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutropenia</td>
<td>153/405 (38)</td>
<td>103/388 (27)</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>124/405 (31)</td>
<td>63/388 (16)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>52/405 (13)</td>
<td>36/388 (9)</td>
</tr>
<tr>
<td>Anemia</td>
<td>53/405 (13)</td>
<td>48/388 (12)</td>
</tr>
<tr>
<td>Receipt of growth factors — no./total no. (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Febrile neutropenia — no. (%)‡</td>
<td>14 (3)</td>
<td>6 (1)</td>
</tr>
<tr>
<td>Grade ≥3 nonhematologic adverse event occurring in >5% of patients — no. (%)‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>70 (17)</td>
<td>27 (7)</td>
</tr>
<tr>
<td>Peripheral neuropathy§</td>
<td>70 (17)</td>
<td>3 (1)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>24 (6)</td>
<td>3 (1)</td>
</tr>
<tr>
<td>Grade ≥3 peripheral neuropathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median time to onset — days</td>
<td>140</td>
<td>113</td>
</tr>
<tr>
<td>Median time to improvement by one grade — days</td>
<td>21</td>
<td>29</td>
</tr>
<tr>
<td>Median time to improvement to grade ≤1 — days</td>
<td>29</td>
<td>NR</td>
</tr>
<tr>
<td>Use of nab-paclitaxel resumed — no./total no. (%)</td>
<td>31/70 (44)</td>
<td>NA</td>
</tr>
</tbody>
</table>

* NA denotes not applicable, and NR not reached.
† Assessment of the event was made on the basis of laboratory values.
‡ Assessment of the event was made on the basis of investigator assessment of treatment-related adverse events.
§ Peripheral neuropathy was reported on the basis of groupings of preferred terms defined by standardized queries in the Medical Dictionary for Regulatory Activities.
FOLFIRINOX vs. Gem/nab-Paclitaxel

• No direct comparison

• Indirect comparison: slightly greater activity but worse toxicity with FOLFIRINOX

• NICE guidelines recommend offering FOLFIRINOX for patients with PS 0-1

• Pragmatically Gem-\textit{Nab}-Paclitaxel adopted by multiple studies as chemotherapy backbone
Suggested 1st line approach

Metastatic PDAC

Poor PS
- BSC
- Single Agent Gemcitabine

Good PS
- FOLFIRINOX
- Gem–Nab–Paclitaxel
- Gemcitabine combination

Clinical trial
Suitable for 50% patients

Nanoliposomal Irinotecan not NICE approved

Suggested 2nd Line Options

1st Line

2nd Line

3rd Line

Clinical Trials

FOLFIRINOX

Gemcitabine Based

Oxaliplatin Based

Gemcitabine Based

????

????

Clinical Trials
Targeted Agents for Metastatic Disease
Gemcitabine + targeted agents

- Multiple attempts at combining gemcitabine with targeted agents
- Despite often promising pre-clinical data and early phase studies results resoundingly disappointing

<table>
<thead>
<tr>
<th>Agent</th>
<th>No. Pts</th>
<th>PFS (months)</th>
<th>OS (months)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gem + Cetuximab</td>
<td>745</td>
<td>3.4 vs. 3 (p=0.18)</td>
<td>6.3 vs. 5.9 (p=0.19)</td>
<td>Philip et al. (2010)</td>
</tr>
<tr>
<td>Gem + Bevacizumab</td>
<td>602</td>
<td>3.8 vs. 2.9 (p=0.18)</td>
<td>5.8 vs. 5.9 (p=0.95)</td>
<td>Kindler et al. (2010)</td>
</tr>
<tr>
<td>Gem + Aflibercept</td>
<td>546</td>
<td>3.1 vs. 3.7 (p=1.018)</td>
<td>6.5 vs. 7.8 (p=0.2034)</td>
<td>Rougier et al. (2013)</td>
</tr>
<tr>
<td>Gem + Axitinib</td>
<td>632</td>
<td>4.4 vs. 4.4 (p=0.5203)</td>
<td>8.5 vs. 8.3 (p=0.5436)</td>
<td>Kindler et al. (2011)</td>
</tr>
</tbody>
</table>
Gemcitabine + Erlotinib

- EGFR overexpressed in ~90% PDAC

- n= 569, Phase III, gem +/- erlotinib

- 1st agent to show statistically significant increase in mOS **BUT** Δ only 12 days for mOS

- **Skin rash** independent prognostic factor for disease control

- FDA and EMA approved **BUT** not in regular clinical use

Challenges of Targeted Treatment

- Complex mutational landscape
- Activating mutations of *KRAS* ubiquitous
- >50% inactivation *TP53*, *SMAD4* and *CDKN2A* BUT many infrequently mutated genes result in significant intertumoural heterogeneity
New Molecular Insights and Future Targets
Whole Genome Sequencing identified 4 Subtypes of PDAC

Actionable Genetic Alterations

- **Level 2B**: FDA-approved biomarker in another indication.
- **Level 3B**: Not FDA-approved biomarker or drug, but clinical evidence potentially links this biomarker or drug to response.
- **Level 4**: Not FDA-approved biomarker or drug, but preclinical evidence potentially links this biomarker or drug to response.

5.5% patients
- ERBB2 (6)
- CDK4 (2)
- BRCA 1/2 (8)
- BRAF V600E (1)
- Ros-1 (1)
- Alk (1)

4.6% patients
- AKT (1)
- ERBB2 (1)
- PIK3CA (5)
- FGFR1 amp (5)
- FGFR2 fus (1)
- NTRK3 fus (1)

68% patients

Molecular Subtyping in Clinic: Immunotherapy

- Checkpoint inhibitor studies shown minimal to no activity in PDAC
- KEYNOTE-016 study of Pembrolizumab in patients with dMMR
- ~1% PDAC patients dMMR
- 5/6 PDAC patients responded

Molecular Subtyping in Clinic: PARP inhibitors

Patients With Measurable Disease at Baseline

<table>
<thead>
<tr>
<th></th>
<th>Olaparib (n = 78)</th>
<th>Placebo (n = 52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective response,* n (%)</td>
<td>18 (23.1)</td>
<td>6 (11.5)</td>
</tr>
<tr>
<td>Median duration of response, mos</td>
<td>24.9</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Median PFS, Mos

- **Olaparib**: 7.4 mos
- **Placebo**: 3.8 mos

HR: 0.53 (95% CI: 0.35-0.82; \(P = .004 \))

Case Report

• 49 year old woman

• **2008**: Patient found to be a BRCA 1 mutation carrier, underwent prophylactic BSO and bilateral risk reducing mastectomy

• **Dec 2016**: Patient presented with new left upper quadrant pain

• **Jan 2017**: CT revealed 9.7cm pancreatic tail mass, 2cm liver metastasis and 9mm left lung lesion
Case Report

- **Jan 2017**: CT guided biopsy of pancreatic mass confirmed PDAC, baseline Ca19.9 889

- **Feb- May 2017**: Patient completed 8 cycles of FOLFIRINOX

- **July 2017**: Patient was randomized onto the POLO study of Olaparib maintenance following platinum chemotherapy for patients with germline mutations in BRCA 1/2
Disease Response

Feb 2017

June 2018

- Patient remained well on study and was able to go travelling with her family
- “I am back at work living a full life which is not dominated by this disease”
Case Report Continued

- **April 2019**: Patient developed progressive disease in lungs and pancreas and therefore came off study.

- **April 2019 - current**: Patient re-challenged with FOLFIRINOX chemotherapy and on recent CT scan there was resolution of the lung metastases and a reduction in the size of the primary disease.
Is research making a difference in PDAC?

- **YES!**

- Many challenges- inherent biological aggressiveness and heterogeneity of disease

- Modest improvements in chemotherapy combinations

- Targeted agents disappointing BUT new technologies improving understanding and providing novel targets

- Sound biological trial design with good early phase studies and predictive biomarker development key
Questions?