

Virtual National Study Sessions

October 2020

Treatment | Dietetic Management | Emotional Support

#PCUKStudyDay

SABR: The Latest Development in Radiotherapy

Monday 5th October 2020, 13.00 – 14.00

The opportunities of Stereotactic Ablative Body Radiotherapy (SABR) for locally advanced unresectable pancreatic cancer

An overview

Outline of session

 Principles and practice of Stereotactic Ablative Body Radiotherapy (SABR)

specific utility and challenges in Pancreatic cancer

- Evidence base for SABR in Pancreatic Cancer
 - Published data, Patient public input and UK
 Clinical Oncology perspectives
- Future developments on the horizon
 - Promise of newer technologies

Core principles for Precision RT

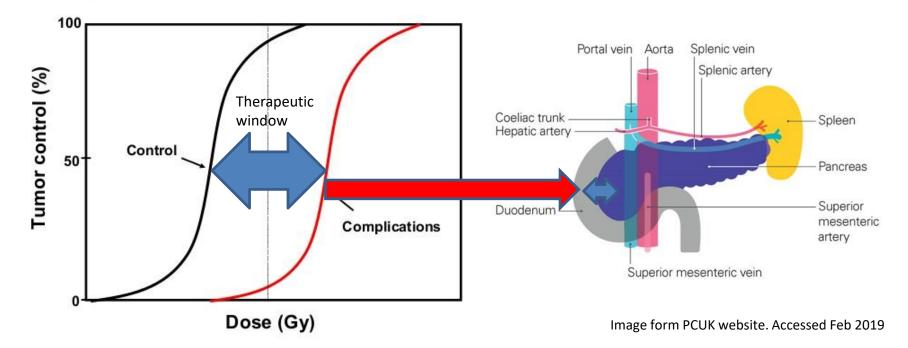
- Image Guided RT = IGRT
 - Patient derived treatment volumes (personalised)
 - Adaptive Treatment (on line imaging)
 - Motion management
- High Dose to Target Volume
 - Increasing Biological effective doses (BED)
 - dose per treatment higher than conventional regimes (e.g. SABR)
 - Addition of drug
- Maximal sparing of normal tissue
 - Dose sculpting
 - Knowing when / how to compromise dose / target coverage

SABR

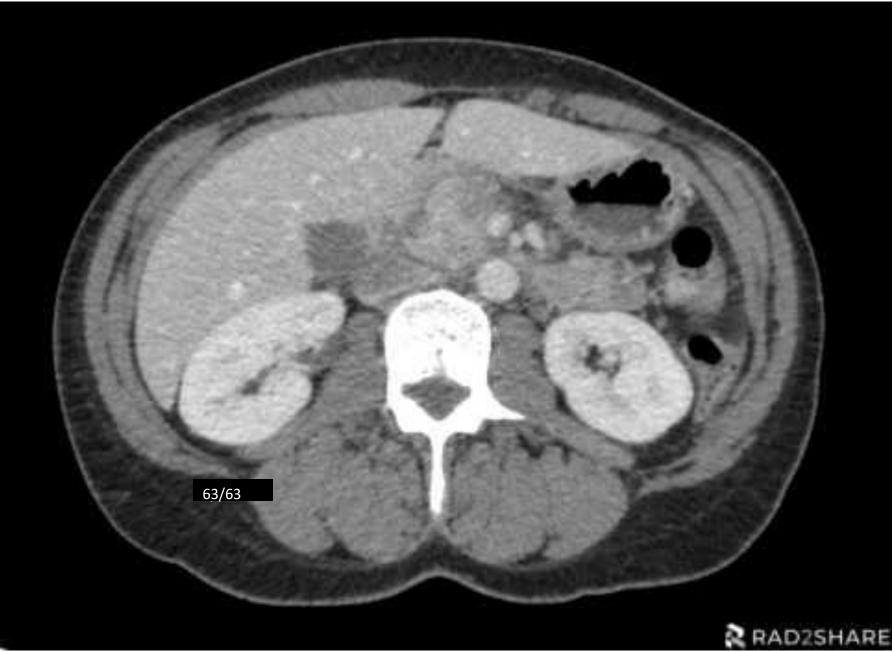
 Stereotactic ablative body radiotherapy (SABR) refers to the precise irradiation of an imagedefined extra-cranial lesion with the use of high radiation dose in a small number of fractions

UK SABR Consortium guidelines 2013

Linear Accelerators

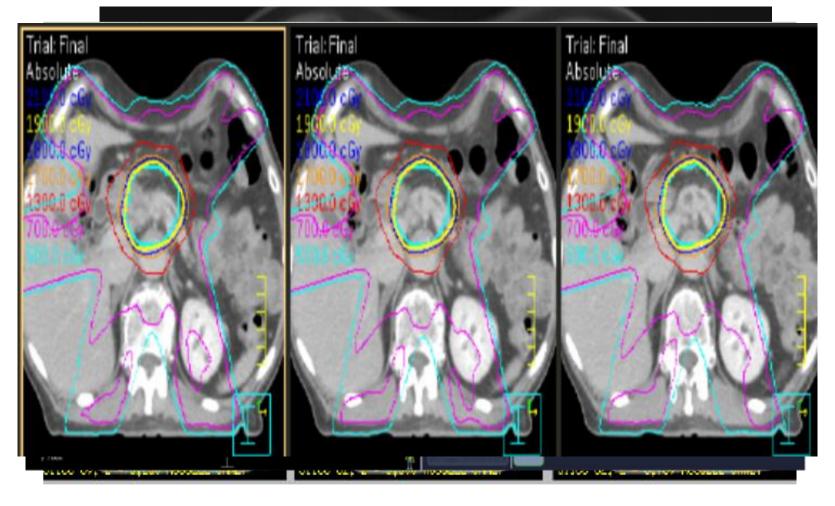


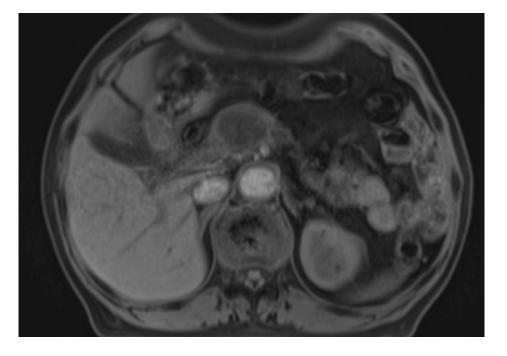
Principles of radiation therapy in Pancreatic tumours


Therapeutic Index

Pancreatic RT challenges

- Target Volume delineation
 - Difficult to outline
 - Imaging underestimates tumour
- Organs at Risk
 - Close proximity
 - Narrow therapeutic index
- Motion





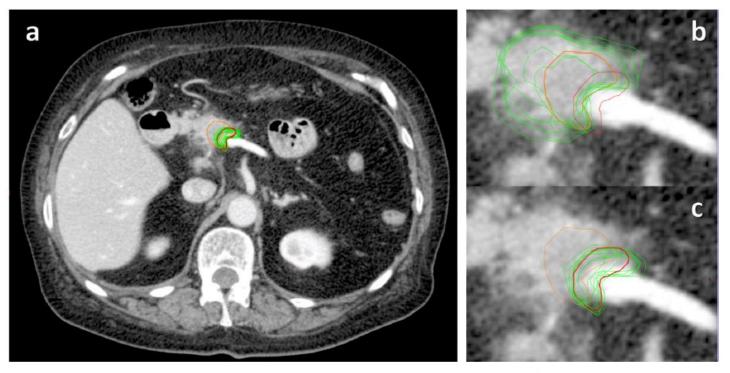
Case study – current practice

Personalised Adaptive RT case

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com


Pancreatic cancer SBRT

Conformity analysis to demonstrate reproducibility of target volumes for Margin-Intense Stereotactic Radiotherapy for borderline-resectable pancreatic cancer

🔲 CrossMark

Daniel L.P. Holyoake^{a,e}, Maxwell Robinson^{a,e}, Derek Grose^b, David McIntosh^b, David Sebag-Montefiore^{c,d}, Ganesh Radhakrishna^d, Neel Patel^e, Mike Partridge^a, Somnath Mukherjee^{a,e}, Maria A. Hawkins^{a,e,*}

*CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford; ^bThe Beatson West of Scotland Cancer Centre, Glasgow; ^cUniversity of Leeds, CRUK Leeds Centre; ^dLeeds Cancer Centre, St James's University Hospital, Leeds; and ^eThe Churchill Hospital, Oxford, UK

Target volume definition

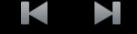
Comparison of investigator-delineated gross tumour volumes and quality assurance in pancreatic cancer: Analysis of the on-trial cases for the SCALOP trial

Emmanouil Fokas^{a,1}, Emiliano Spezi^{b,1}, Neel Patel^c, Chris Hurt^d, Lisette Nixon^d, Kwun-Ye Chu^{a,c}, John Staffurth^{e,f}, Ross Abrams^g, Somnath Mukherjee^{a,c,*}

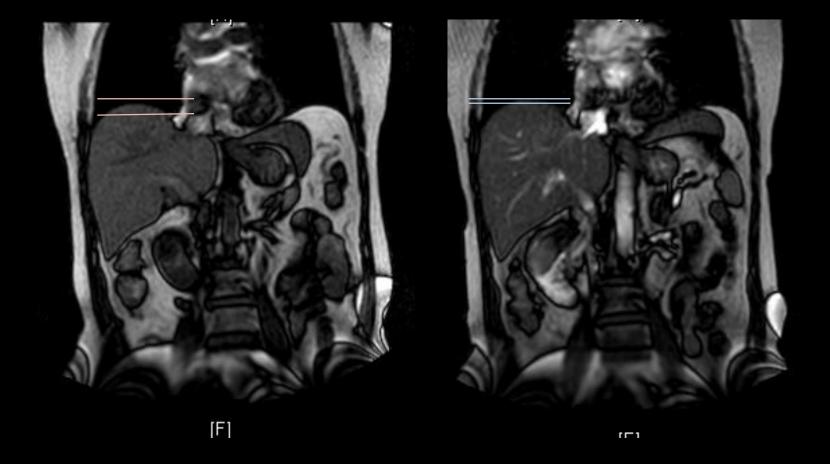
*Department of Oncology, CRUK/MRC Institute for Radiation Oncology, University of Oxford; ^bSchool of Engineering, Cardiff University; ^cOxford University Hospital NHS Foundation Trust; ^dWales Cancer Trials Unit, Centre for Trials Research; ^eInstitute of Cancer and Genetics, Cardiff University; ^fCardiff NCRI RTIQA Centre, Velindre NHS Trust, UK; *Department of Radiation Oncology, Rush University Medical Center, Chicago, USA

		Univariable analysis				Multivariable analysis			
		n	Odds ratio	95% CIs	р	n	Odds ratio	95% CIs	р
gsGTV	continuous	58	1.02	0.98-1.05	0.341	58	0.99	0.96-1.94	0.876
JCI GTV	<0.7	32	1.00			32	1.00		
	≥0.7	26	5.71	1.81-18.08	0.003	26	7.43	1.86-29.7	0.005
JCI PTV	<0.8	28	1.00						
	≥0.8	30	2.5	0.84-7.42	0.099				
Trial arm	Cem	35	1.00			27	1.00		
	Cape	35	0.63	0.24-1.02	0.335	31	0.57	0.15-2.21	0.417
WHO PS	0	29	1.00			24	1.00		
	1-2	41	1.41	0.54-3.73	0.484	34	1.45	0.39-5.43	0.583
Sex	Male	40	1.00			34	1.00		
	Female	30	2.12	0.81-5.59	0.127	24	2.94	0.77-11.21	0.113
Age	<65	36	1.00			30	1.00		
	≥65	34	0.55	0.21-1.42	0.216	28	1.43	0.33-6.11	0.632
RT fractions	0-26	12	1.00			10	1.00		
	27+	50	0.47	0.13-1.66	0.240	48	0.57	0.11-3.03	0.508

Pancreatic cancer

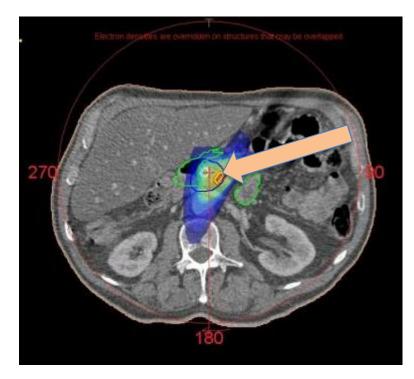

MRI-based tumor motion characterization and gating schemes for radiation therapy of pancreatic cancer

Hanne D. Heerkens^{a,*}, Marco van Vulpen^a, Cornelis A.T. van den Berg^a, Rob H.N. Tijssen^a, Sjoerd P.M. Crijns^a, Izaak Q. Molenaar^b, Hjalmar C. van Santvoort^b, Onne Reerink^a, Gert J. Meijer^a

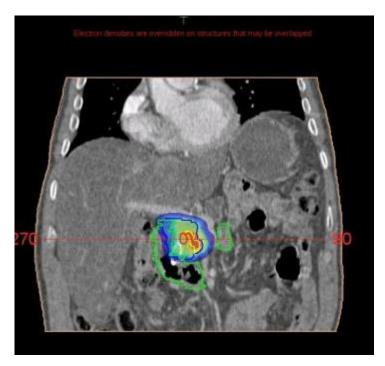

*Department of Radiotherapy; and ^bDepartment of Surgery, University Medical Center Utrecht, The Netherlands

Motion management strategies crucial for precision RT delivery

\mathbf{H}


Slide courtesy John Rogers & Lisa McDaid

The evidence build


SABR FOR PANCREATIC CANCER

Margin Intensive SABR

• High dose to vessel contact

• Dose sculpting away from duodenum

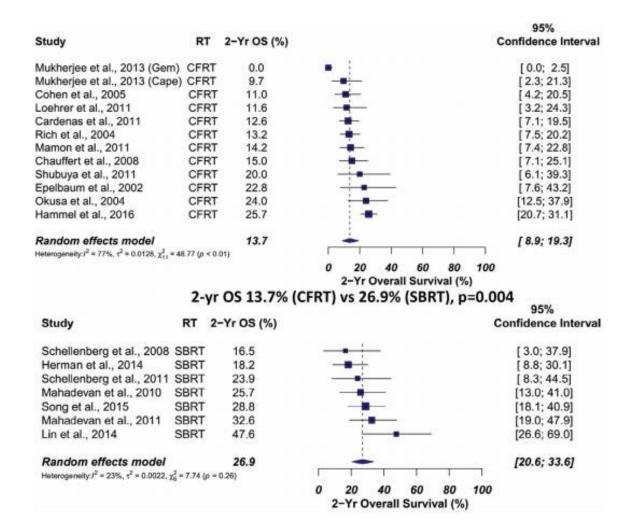
SPARC trial – multicentre UK trial (CI = Maria Hawkins)

Pooled analysis SABR for LAPC

- 19 published series (1009 pts); follow up 6-21 months
- Heterogeneous with including LAPC and BRPC, different SACT schedules and regimens, variable dose- fractionation, varying platforms
- BED₁₀ 37.5 120 Gy
- 1 year OS = 51.6% (13 trials) median OS = 5.7 47 months
- Local Control rates = 72.3% (95%CI 58.5%-79%)
 - Total dose and higher fractions significantly better 1year LCR
- PFS = 4.8 27 months
- Toxicity = late G3/4 < 11% ;
 - in 6 series g3/4 rate 0%

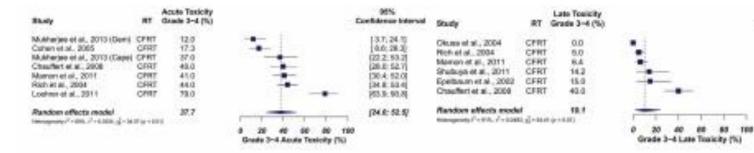
Petrelli et al. IJROBP 2017: 97(2)

Level 1B evidence


Original Article

Conventionally fractionated radiation therapy versus stereotactic body radiation therapy for locally advanced pancreatic cancer (CRiSP): An international systematic review and meta-analysis

Leila T. Tchelebi MD 🕿, Eric J. Lehrer MD, Daniel M. Trifiletti MD, Navesh K. Sharma DO, Niraj J. Gusani MD, MS, Christopher H. Crane MD, Nicholas G. Zaorsky MD


First published: 03 March 2020 | https://doi.org/10.1002/cncr.32756 | Citations: 5

2 year survival

Superior 2Yr OS favouring SABR (statistically significant p< 0.05)

Side effect profile

Grade 3-4 Acute Tox 37.7% (CFRT) vs 5.6 % (SBRT), p=0.013

Grade 3-4 Late Tox 10.1% (CFRT) vs 9.0 % (SBRT), p=0.85

25%

Confidence Interval

[0.0; 2.3]

1.7. 0.01

2.1:12.80

2.9: 31.9

132 33.5

(26.0: 52.7)

11.8, 21.81

Potential benefits of SABR

• Reduction in number of treatment visits

• Jones, C.M., et al. Br J Cancer **123**, 709–713 (2020).

- Longer freedom from treatment time / PFS
 - Suker et al. EClinialMed 17(2019)
- Improved local control
 - Tangible benefit in reduction in pain
 - Herman et al. Cancer April 2015
- Effects of SABR beyond primary disease control
 - Griffin et al. IJROBP 2020. 107(4); 766-778
- Improved tolerability

Patient- carer perspective

- The PPE was conducted in a virtual format
 - online survey (8 participants) or join an online focus group with Consultant Clinical Oncologists (5 participants).
 - Baseline knowledge was low with 50% having no prior knowledge of SABR and 75% unaware of its role in LAPC.
 - If SABR was offered 92.3% (12 of 13) would opt for this as the treatment of choice over CRT
 - discussions highlighted that the rationale for this approach should be clearly presented.
 - Experience and expertise in technique
 - The group emphasised quality of life as a key potential advantage of SABR,
 - 100% feeling avoidance of chemotherapy, and 87.5% reduction in hospital visits -important or very important.
 - 75% were prepared to travel for access to SABR.

Clinical Oncologists perspective

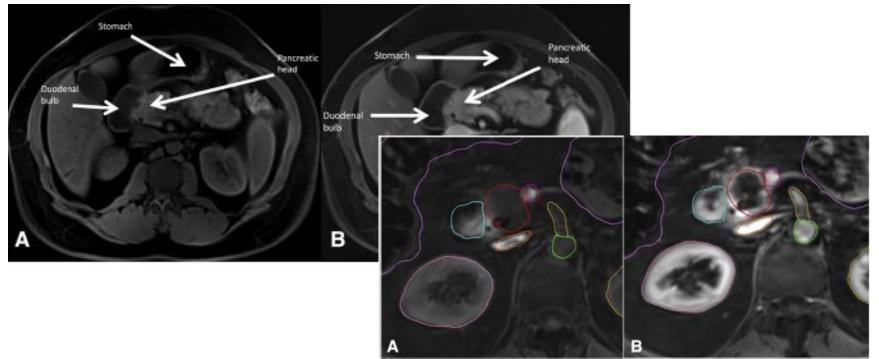
- 25 HPB Clinical Oncology consultants across 21 UK centres.
- Support for SABR in LAPC was high:
- 100% felt it would be supported by local MDT
 - 96% agreed to offer within this indication.
- Capacity for implementation was limited with only 68% of centres able to adapt current equipment for abdominal SABR
- 72% requiring support to establish the service in their centre.
- Suggestions included external peer review (73% support), CPD accredited training (68% support) and mentoring from another institution (43% support).

The promise of newer technology

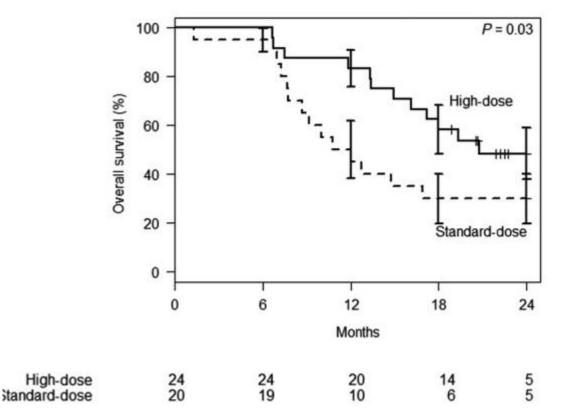
IMPROVING THE THERAPEUTIC INDEX

MR_Linac

CrossMark


Original Report

Recommendations for MRI-based contouring of gross tumor volume and organs at risk for radiation therapy of pancreatic cancer


H.D. Heerkens MD^a, W.A. Hall MD^b, X.A. Li PhD^b, P. Knechtges MD^c, E. Dalah PhD^{b, d}, E.S. Paulson PhD^b, C.A.T. van den Berg PhD^a, G.J. Meijer PhD^a, E.J. Koay MD, PhD^e, C.H. Crane MD^e, K. Aitken MD^f, M. van Vulpen MD, PhD^a, B.A. Erickson MD^{b,*}

^aDepartment of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands ^bDepartment of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin ^cDepartment of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin ^dMedical Diagnostic Imaging Department, College of Health and Science, University of Sharjah, Sharjah, Dubai ^eDepartment of Radiation Oncology, MD Anderson Hospital, Houston, Texas ^fDepartment of Radiation Oncology, Royal Marsden Hospital London, England

Received 8 September 2016; accepted 10 October 2016

Dose escalation with MRgRT

Multicentre, retrospective cohort form 5 centres Improved outcomes with BED > 70Gy

- 2 year OS high dose vs. standard dose = 49% vs. 30 %
- 2 year FFLP high dose vs. standard dose = 77% vs. 57%

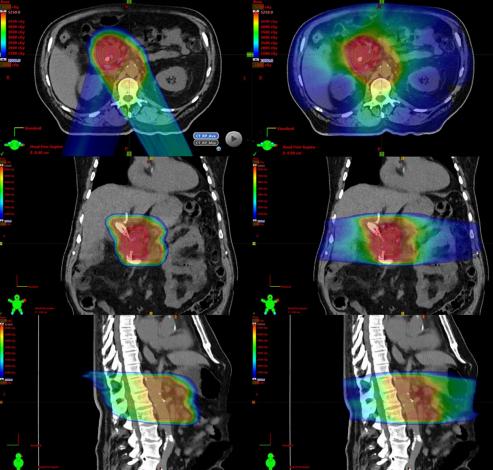
Rudra S, Jiang N, Rosenberg SA, et al. Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med. 2019;8(5):2123-2132.

Stereotactic MR guided Adaptive Radiotherapy SMART

• Development of Phase 2 studies underway


 Opportunity to evaluate dose escalation with MRgRT

> AM Bruynzeel & FJ Lagerwaard. Clin Transl Radiat Oncol 2019; 18: 128-130


The Equipment: Varian Probeam

Example planning study

CTV/OAR	DVH parameter (unit)	IMPT Mean (SD)	VMAT Mean (SD)	P-value
CTV	CTV45 V95% (%)	100.0 (0.12)	100.0 (0.12)	1.0
	CTV50 V95% (%)	99.9 (0.3)	99.9 (0.3)	1.0
Small bowel	Mean (Gy)	3.7 (3.7)	17.4 (5.6)	<.0001*
	V15 (cc)	55 (75)	292 (311)	.008*
	V30 (cc)	26 (49)	84 (109)	.02*
	V45 (cc)	6(12)	18 (31)	.05
Duodenum	Mean (Gy)	30.5 (12.0)	38.3 (9.0)	.0005
	V30 (cc)	41 (20)	51 (25)	.0062
	V45 (cc)	27 (16)	35 (21)	.0019
Stomach	Mean (Gy)	5.9 (2.8)	18.9 (3.5)	< .0001
	V30 (cc)	29 (25)	86 (38)	.0001
	V45 (cc)	5 (7)	17 (11)	<.0001
Large bowel	Mean (Gy)	1.7 (1.3)	15.9 (4.2)	<.0001*
	V30 (cc)	10(12)	70 (90)	.02*
	V45 (cc)	98 (303)	663 (1125)	.09
Liver	Mean (Gy)	3.6 (2.2)	11.6 (3.2)	<.0001*
	V30 (%)	4.3 (2.9)	8.2 (4.2)	.001*
Kidney	Mean (Gy)	4.1 (1.9)	10.1 (1.6)	<.0001*
	V12 (%)	15.9 (7.5)	36.4 (12.8)	.0001*
	V18 (%)	6.8 (2.9)	7.5 (3.3)	.5
Spinal cord	Maximum (Gy)	39.0 (7.1)	37.4 (4.6)	.54

Advances in Radiation Oncology (2018) 3, 314–321

Dose escalation with Proton Beam therapy

- Improved outcomes with dose escalation
 - 2 yr OS rate 50.8%
 - 2 yr LC rate 78.9%

» Hiroshima at al; Radiother Oncol 2019; 136: 37-43

- Improved functional outcomes
 - Less weight loss
 - Improved FACT scores

» Jethwa et al. Advances in Radiation Oncology (2018) 3, 314–321

SUMMARY

Summary

- SABR is at least equivalent to conventional chemoRT with current approaches
- Accelerate research to further improve outcomes

 Dose escalation and newer technologies
 Options for adding newer agents e.g. Immunotherapy
- There is support from all stakeholders
 - Application for routine commissioning to NHS E has been made

Pancreatic precision RT collaborative

- Prof. Somnath Mukherjee (Oxford)
- Drs. Derek Grose, David McKintosh (Glasgow)
- Dr. Katherine Aitken (RMH)
- Dr. Rebecca Goody (Leeds)
- Dr. James Good (B'ham)
- Dr. Claire Harrison (Belfast)
- Dr. Sarah Gwynne (Swansea)
- Dr. Seema Arif (Cardiff)
- Dr S Falk (Bristol)
- Dr. Ajith Thankamma (Cambridge)
- Dr. Daniel Holyoake, Tom Roques (Norfolk & Norwich)
- Dr. Jonathan Wadsley, Ahmad Sabbagh (Sheffield)
- Dr Andrew Jackson (Southampton)
- Dr. Raj Sripadam (Liverpool)
- Dr. Shamilla Sothi (Coventry)
- Dr. Raj Roy (hull)
- Prof. Maria Hawkins (UCL)
- Dr G Radhakrishna (Manchester)
- ...and growing

Acknowledgements

- Patients and carers
- PCUK team
 - Drs C Macdonald
 - Harri Smith and Anna Lakey
- Prf. S Mukherjee, Dr K Aitken et al.
 - Proposal development group for PPP submitted to NHS E for routine commissioning of SABR
- Pancreatic Technical RT teams at the Christie and Leeds