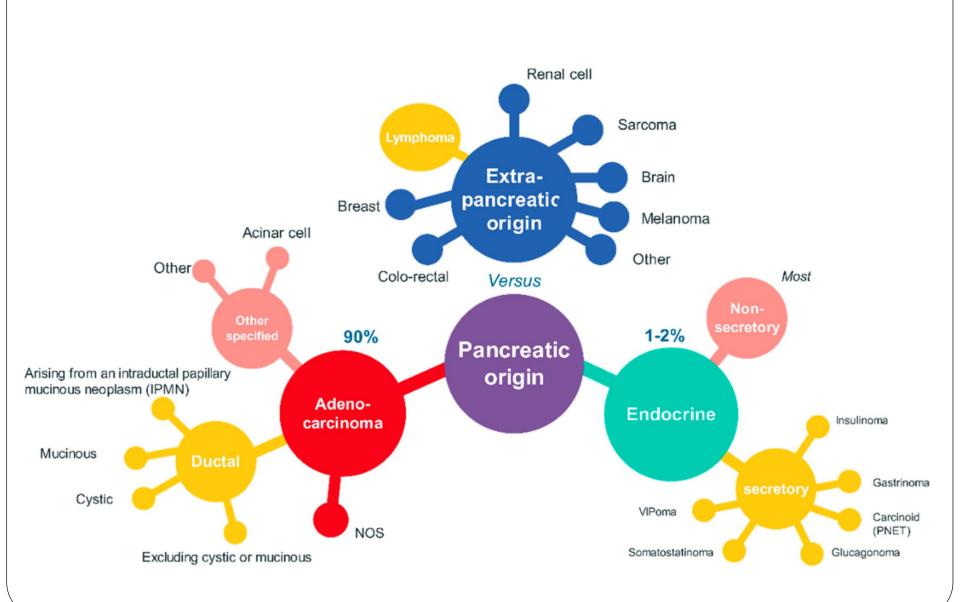

Surgery for Pancreatic Cancer

A Kanwar, D Stell


Dept of HPB Surgery, Derriford Hospital, Plymouth

PANCREAS

Types of Pancreatic Cancers

Cases 10,257 O O New cases of pancreatic cancer, 2015-2017, UK

Deaths from pancreatic cancer, 2016-2018, UK

Survive pancreatic cancer for 10 or more years, 2013-17, England and Wales

Prevention

Preventable cases of pancreatic cancer, UK

Chemotherapy

Pancreatic cancer patients who have curative or palliative chemotherapy

Radiotherapy

Pancreatic cancer patients who have curative or palliative radiotherapy

PANCREATIC CANCER 16 WARNING SIGNS YOU SHOULD KNOW

PANCREATIC CANCER ACTION NETWORK

SYMPTOMS

Pancreatic cancer may cause only vague symptoms. If you are experiencing one or more of these unexplained symptoms, the Pancreatic Cancer Action Network urges you to see your doctor.

mid-back pain

Jaundice

Weight loss

Recent onset diabetes

RISK FACTORS

appetite

Family History Risk increases if multiple first-degree relatives had the disease or if any were diagnosed under 50.

Smoking Smoking may cause about 20-30 percent of all exocrine pancreatic cancer cases.

Diet A diet high in red and processed meats may increase risk. A diet high in fruits and vegetables may decrease risk.

Gender Slightly more men are diagnosed with pancreatic cancer than women.

Age

The chance of

developing

pancreatic cancer

increases with age

but research studies have identified certain risk factors.

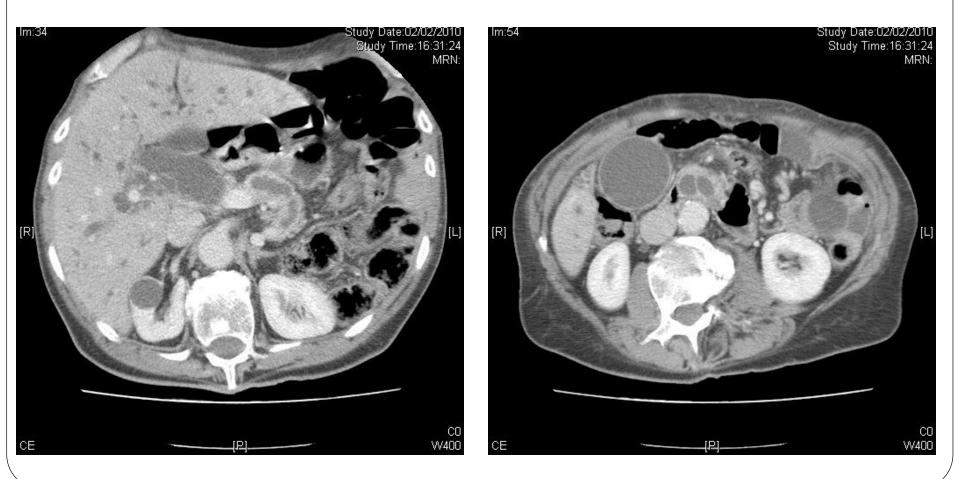
Obese people have a 20 percent increased risk of developing the disease, compared with people of a normal weight.

The exact causes of pancreatic cancer are not yet well understood.

Diabetes Long-standing lover 5 years) diabetes increases risk

Race African Americans and Ashkenazi Jews have a higher incidence of pancreatic cancer.

Pancreatitis Chronic pancreatitis Increases risk. Risk is even higher for people with hereditary pancreatitis

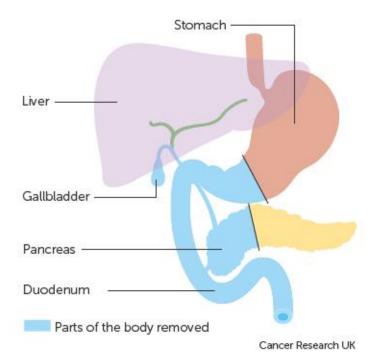

10th most common cancer in the UK.

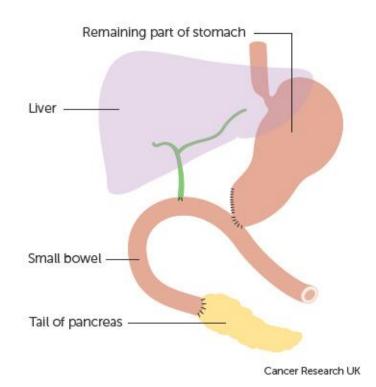
6th most common cause of cancer death in the UK

Investigations

- **<u>Pancreatic protocol CT scan</u>** including chest, abdomen and pelvis.
- **FDG-PET**(Fluorodeoxyglucose-positron emission tomography) CT for patients who will be having cancer treatment.
- If more information is needed consider:
 - ERCP +/- stenting to relieve jaundice +/- brushings
 - MRI, for cystic pancreatic lesions or for suspected liver metastases
 - EUS (Endoscopic Ultrasound) +/- FNA, if unclear
 - Laparoscopy with laparoscopic ultrasound, for suspected small-volume peritoneal and/or liver metastases, if resectional surgery is a possibility.
- Tissue diagnosis is usually not necessary to for surgery, but is generally required for Chemotherapy

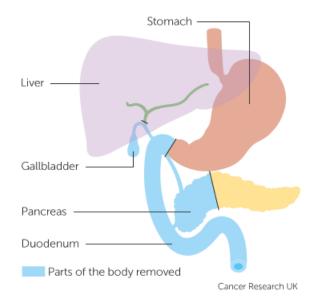
The 'double-duct' sign

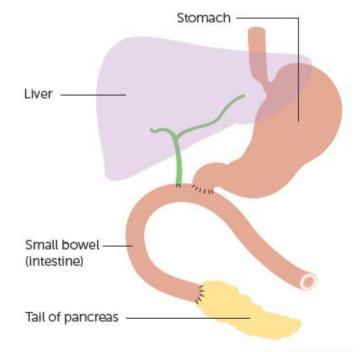

Treatments for pancreatic cancer

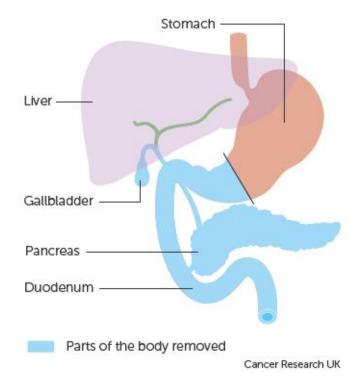

- Depends on:
 - Type of pancreatic cancer
 - Location
 - Extent of disease spread
 - Physical fitness
- It may include surgery, chemotherapy, radiotherapy and supportive care.

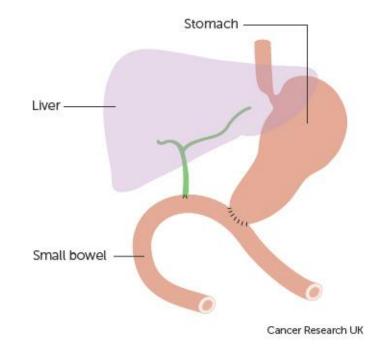
Types of surgery for pancreatic malignancy

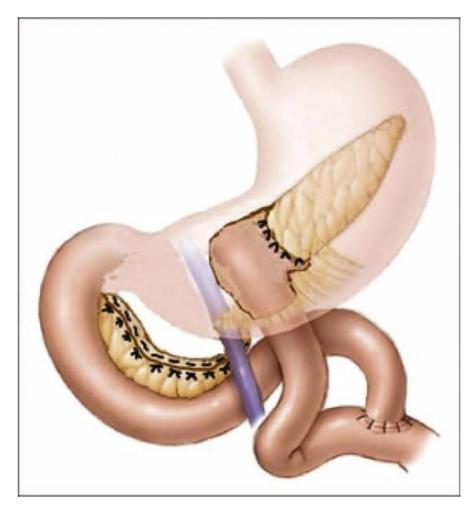
- <u>Potentially</u> curative surgery
 - When it's possible to remove (resect) all the macroscopic visible disease
- Palliative surgery
 - Disease is too widespread
 - Surgery is done to relieve symptoms or to prevent certain complications like a blocked bile duct or intestine
 - Goal is not the cure


Whipple's procedure

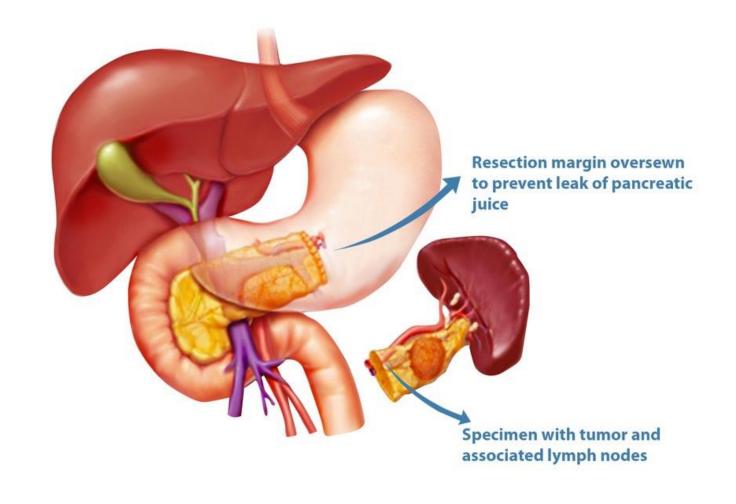


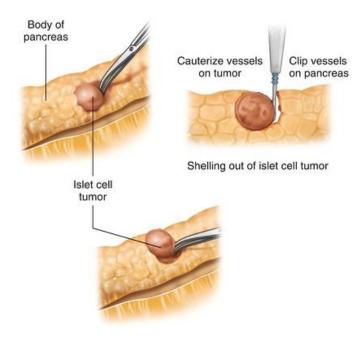

Pylorus preserving pancreaticoduodenectomy (PPPD)




Cancer Research UK

Total Pancreatectomy



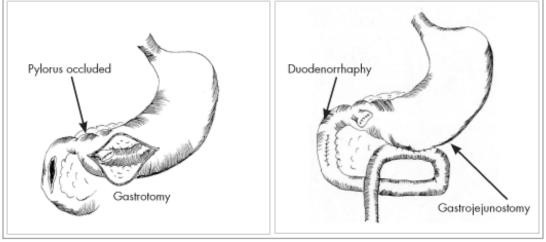

Central Pancreatic resection with Roux–en-Y anastomosis

Distal Pancreatectomy and Splenectomy (usually Laparoscopic)

Pancreatic Enucleation of Tumors

Palliative Procedures

Duodenal bypass



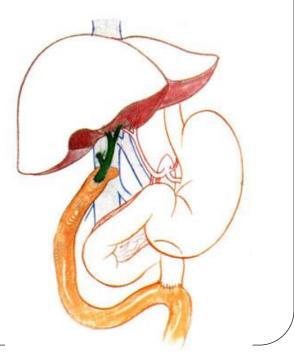
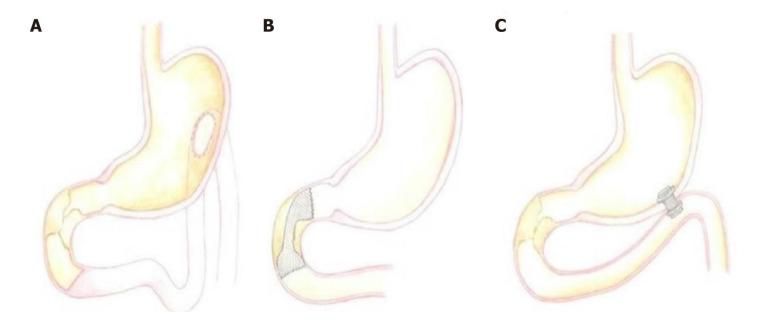
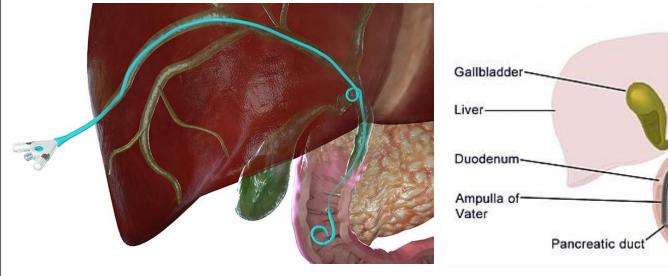
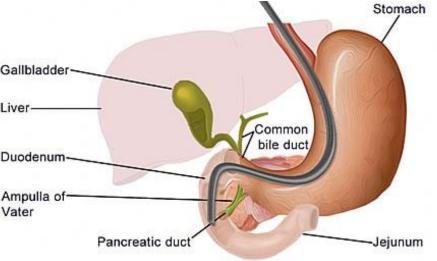



Figure 1. Pyloric exclusion procedure.¹²

Duodenal stents for Gastric Outlet obstruction




Figure 2 Graphic representation of the main approaches applied to manage malignant gastric outlet obstruction. A: Surgical gastrojejunostomy; B: Endoscopic enteral stenting with selfexpanding metal stents; C: Endoscopic ultrasound-guided gastroenterostomy.

Palliative Biliary Stents

Percutaneous Transhepatic Cholangiogram (PTC)

Endoscopic Retrograde Cholangio Pancreaticography (ERCP)

Common Controversies

Review > Cochrane Database Syst Rev. 2012 Sep 12;9(9):CD005444.

doi: 10.1002/14651858.CD005444.pub3.

Pre-operative biliary drainage for obstructive jaundice

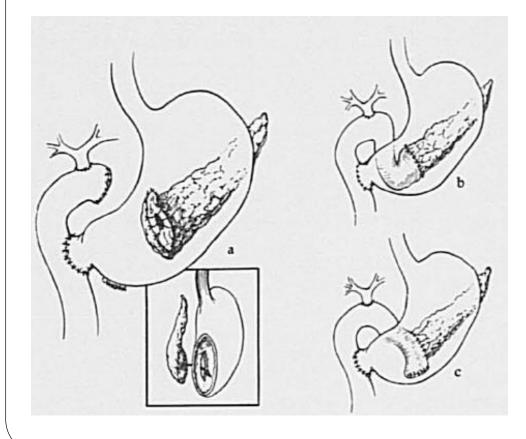
Yuan Fang ¹, Kurinchi Selvan Gurusamy, Qin Wang, Brian R Davidson, He Lin, Xiaodong Xie, Chaohua Wang

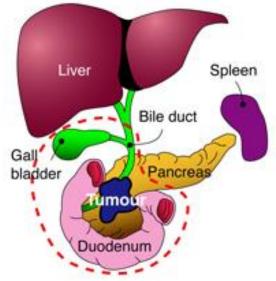
- Analysed 6 trials (n=520)
- Pre-op bili 40-250 in 1 trial and between 100 -172 in others
- Pre-operative biliary drainage did not appear to be beneficial to the patients.
- It may increase serious adverse events and could add to the cost of the health care.
- Our practice is to avoid stenting if bili is likely to stay below 200-230 before surgery (logistically very difficult to achieve)

Standard Whipple versus PPPD

Comparison of the stomach-preserving versus classic 'Whipple' operation for people with cancer of the pancreas or the periampullary region Cochrane

Published: 16 February 2016


Authors:


Hüttner FJ, Fitzmaurice C, Schwarzer G, Seiler CM, Antes G, Büchler MW, Diener MK

- 8 RCT's
- N=512
- No relevant differences in mortality, morbidity, and survival.
- Significantly lesser operating time, intr-op blood loss and blood transfusions in PPD – but low quality evidence.

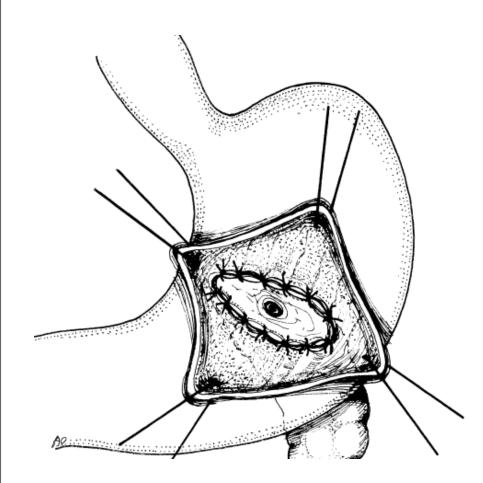
• Our practice is standard Whipple's

Pancreatic-enteric anastomosis options – PG or PJ?

Pancreatico-jejunostomy

Pancreatico-gastrostomy

Pancreaticojejunostomy versus pancreaticogastrostomy reconstruction for the prevention of postoperative pancreatic fistula following pancreaticoduodenectomy


Yao Cheng, Marta Briarava, Mingliang Lai, Xiaomei Wang, Bing Tu, Nansheng Cheng, Jianping Gong, Yuhong Yuan, Pierluigi Pilati, Simone Mocellin Authors' declarations of interest

Version published: 12 September 2017 Version history

- 10 RCT's
- N=1629
- No reliable evidence to support the use of pancreatojejunostomy over pancreatogastrostomy.
- Our standard practice is PG

Posterior pancreatico-gastrostomy

Theoretical advantages:

- •Low gastric pH
- •No enterokinase
- •NG tube (decompression)

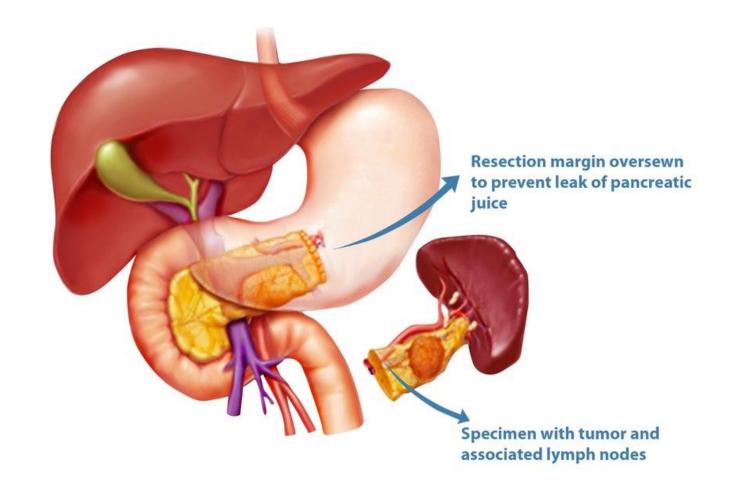
Morbidity/Mortality of Whipples procedures

Median LOS = 11 days (range 7-83) Leak rate (clinically significant) 13/129 (10%) Mortality n=8 (6.2%)

	n	Leak rate	Mortality
PJ	91	13 (15%)	7 (7.7%)
PG	38	2 (5%)	1 (2.6%)

n=129

Role of extended lymphadenectomy?


• Rationale

• Removing all peri-pancreatic tissues and LNs that carry tumour cells should translate into better survival

Role of extended lymphadenectomy?

- 2 randomized trials
- European lymphadenectomy study group (40 vs. 41 patients)
- Johns Hopkins group (146 vs. 148 patients)
 - No survival benefit with extended lymphadenectomy
 - No substantial evidence for routine use of extended lymphadenectomy for pancreatic cancer
 - o Pedrazzoli P et al., Ann Surg 1998;228:508-517.
 - Yeo CJ et al., Ann Surg 2002; 236:355-368.

Distal Pancreatectomy and Splenectomy (Laparoscopic vs Open)

Randomized clinical trial

Comparison of the duration of hospital stay after laparoscopic or open distal pancreatectomy: randomized controlled trial

B. Björnsson¹, A. Lindhoff Larsson¹, C. Hjalmarsson^{2,3}, T. Gasslander¹ and P. Sandström¹

¹Department of Surgery and Clinical and Experimental Medicine, Linköping University, Linköping, ²Department of Surgery, Blekinge Hospital, Karlskrona, and ³Department of Clinical Sciences, Lund University, Lund, Sweden

*B*7*S* 2020; **10**7: 1281–1288

Table 2 Primary and secondary outcomes				
	LDP (n = 29)	ODP (n = 29)	P †	
Primary outcome				
Postoperative stay at hepatopancreatobiliary centre (days)*	5 (4–5)	6 (5–7)	0.002	
Secondary outcomes				
Discharge to home	14	14	1.000	
Postoperative stay, including referral hospital (days)*	6 (5–8)	8 (6–10)	0.007	
Readmission	4	6	0.487‡	
Total postoperative hospital stay (90 days) (days)*	6 (5–9)	8 (7–13)	0.008	
Time to functional recovery (days)*	4 (2–6)	6 (4–7)	0.007	

*Values are median (i.q.r.). LDP, laparoscopic distal pancreatectomy; OPD, open distal pancreatectomy. \dagger Mann–Whitney U test, except $\ddagger \chi^2$ test.

Comparison of the duration of hospital stay after laparoscopic or open distal pancreatectomy: randomized controlled trial

B. Björnsson¹, A. Lindhoff Larsson¹, C. Hjalmarsson^{2,3}, T. Gasslander¹ and P. Sandström¹

¹Department of Surgery and Clinical and Experimental Medicine, Linköping University, Linköping, ²Department of Surgery, Blekinge Hospital, Karlskrona, and ³Department of Clinical Sciences, Lund University, Lund, Sweden

B7S 2020; 107: 1281-1288

Table 3 Intraoperative and postoperative outcomes

	LDP ($n = 29$)	ODP (n = 29)	P†
Duration of surgery (min)*	120 (105–140)	120 (103–149)	0.482‡
Estimated blood loss (ml)*	50 (25-150)	100 (100-300)	0.018‡
Additional resection	2	4	0.389
Splenectomy	19	23	0.240
Clavien–Dindo complications at 90 days (≥ grade III)	4	8	0.195
Illa	4	5	
lllb	0	1	
IVa	0	1	
IVb	0	0	
V	0	1	
Postoperative pancreatic fistula	9	11	0.581
Grade B	9	10	
Grade C	0	1	
Postoperative delayed gastric emptying	1	5	0.085
Grade A	1	2	
Grade B	0	1	
Grade C	0	2	
Postpancreatectomy haemorrhage	1	0	0.313
Grade A	1	0	
Grade B	0	0	
Grade C	0	0	

*Values are median (i.q.r.). LDP, laparoscopic distal pancreatectomy; OPD, open distal pancreatectomy. $\dagger \chi^2$ or Fisher's exact test, except \ddagger Mann–Whitney U test.

Palliative biliary stents for obstructing pancreatic carcinoma

Alan C Moss, Eva Morris, and Padraic MacMathuna^{III} <u>Cochrane Database Syst Rev.</u> 2006 Apr; 2006(2): CD004200. Published online 2006 Apr 19. doi: <u>10.1002/14651858.CD004200.pub4</u>

- 29 Trials
- n=1700
- Endoscopic <u>metal stents are the intervention of choice</u> at present in patients with malignant distal obstructive jaundice due to pancreatic carcinoma.
- <u>In patients with short predicted survival</u>, their patency benefits over plastic stents may not be realised.

Post-op Complications of Pancreatic Surgery

Incidence of complications following pancreatic resectional surgery in the absence of any preventative treatment—placebo groups from randomised multicentre trials⁴

Localised complications	Incidence (%)	General complications	Incidence (%)
Pancreatic fistula	23.4	Sepsis	3.6
Fluid collection	8.8	Respiratory failure	3.3
Anastomosis leakage	4.0	Death	3.3
Bleeding	4.3	Shock	2.4
Abscess	3.1	Renal failure	1.5
Postoperative pancreatitis	2.9		

Gouillat C, Gigot J. Pancreatic surgical complications—the case for prophylaxis Gut 2001;49:iv29-iv35.

Study	N	Patients with Complications N (%)	Fistula N (%)	Intraabdominal Collection or Abscess N (%)	DGE N (%)	Hemorrhage N (%)	Wound Infection N (%)	Reoperation Rate N (%)
Pancreaticoduodeneo	ctomy							
Buchler et al, 2000	331	127 (38)	7(2)	4(1)	54 (16)	12 (4)	13 (4)	13 (4)
Muscari et al, 2006	300	117 (39)	50 (17)	15 (5)	_	18 (6)	_	_
Winter et al, 2006	1175	415 (35)	52 (4)	38 (3)	161 (14)	_	91 (8)	35 (3)
Reid-Lombardo et al, 2007*	1507	-	196 (13)	97 (6)	187 (12)	54 (4)	-	53 (4)
Mezhir et al, 2009†	340	147 (43)	20 (6)	23 (7)	29 (9)	12 (4)	46 (14)	_
Distal Pancreatecton	ny							
Kooby et al, 2008*†	342	170 (50)	99 (29)	_	_	_	36 (11)	6 (2)
Kleef et al, 2007	302	105 (35)	35 (12)	14 (5)	14 (5)	10 (3)	8 (3)	26 (9)
Goh et al, 2008	232	107 (46)	72 (31)	_	_	_	17 (7)	11 (5)
Nathan et al, 2009	704	232 (33)	203 (29)	36 (5)	_	_	_	40 (6)
Central Pancreatecto	my							
Sauvanet et al, 2002*	53	22 (42)	16 (30)	3 (6)	1 (2)	2 (4)	2 (4)	3 (6)
Roggin et al, 2006	10	6 (60)	3 (30)	_	_	1 (10)	_	1 (10)
Crippa et al, 2007*	100	58 (58)	44 (44)	15 (15)	2 (2)	1(1)	_	0 (0)
Adham et al, 2008	50	18 (36)	4(8)	7 (14)	_	3 (6)	-	6 (12)
Hirono et al, 2009	24	12 (50)	15 (63)	1 (4)	1 (4)	0 (0)	1 (4)	0 (0)
Total Pancreatectom	у							
Billings et al, 2005‡	99	32 (32)	NA	6 (6)	8 (8)	_	4 (4)	2 (2)
Muller et al, 2007	100	38 (38)	NA	2 (2)	8 (8)	2 (2)	2 (2)	15 (15)
Reddy et al, 2009	100	69 (69)	NA	_	11 (11)	14 (14)	18 (18)	_

*Multiinstitutional study

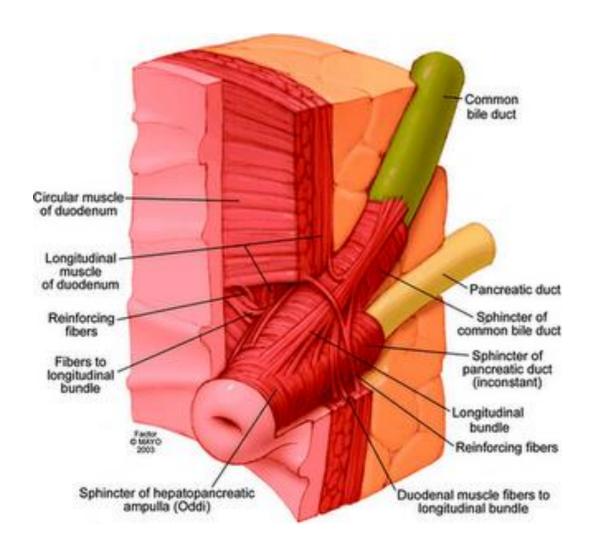
+Matched case-control study

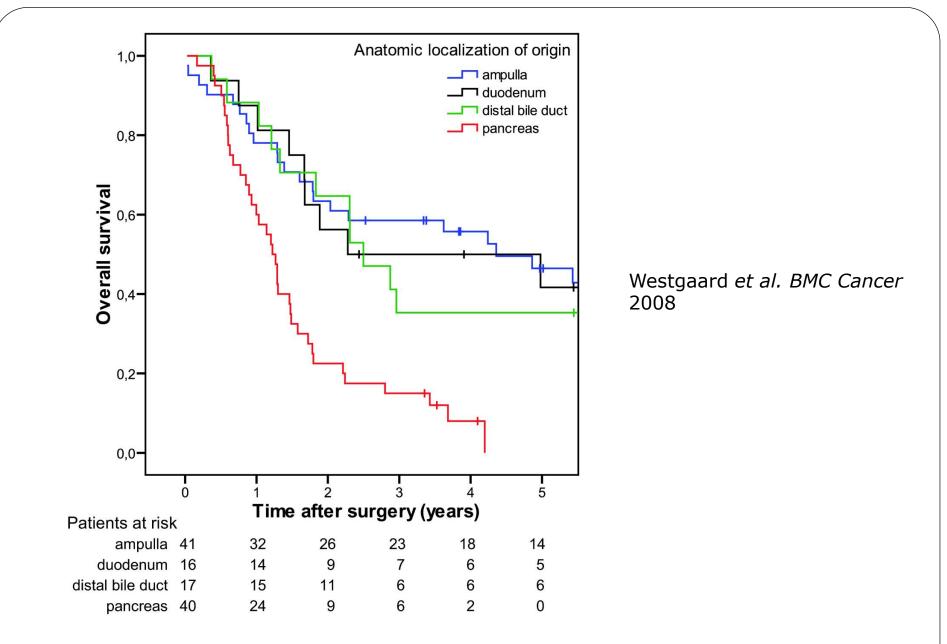
‡Included completion pancreatectomy patient DGE, delayed gastric emptying; NA, not applicable; —, not available

HPB Volume 20, Issue 3, March 2018, Pages 204-215

Systematic review on the impact of pancreatoduodenectomy on quality of life in patients with pancreatic cancer

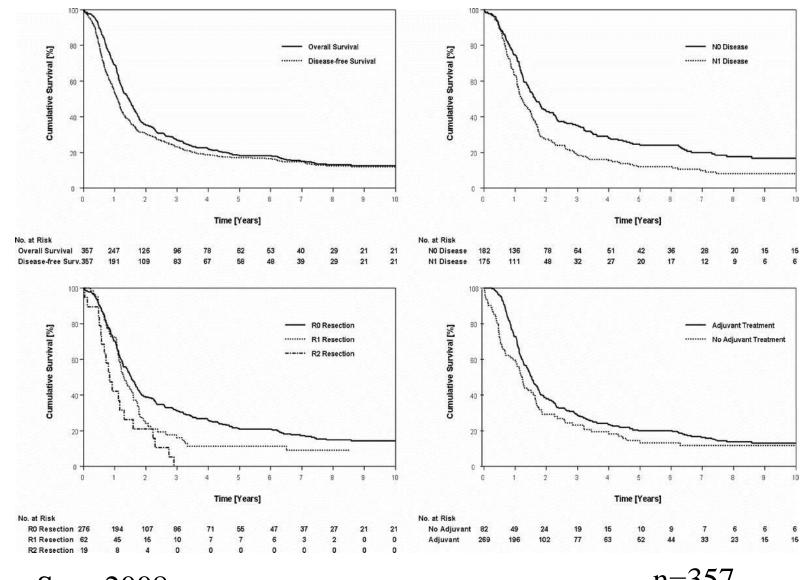
Sven M. van Dijk ¹, Hanne D. Heerkens ², Dorine S.J. Tseng ³, Martijn Intven ², I. Quintus Molenaar ⁴, Hjalmar C. van Santvoort ^{4, 5} 名 図


- QoL of physical and social functioning domains decreased in the first 3 months after surgery.
- Recovery of physical and social functioning towards baseline values took place after 3–6 months.
- Pain, fatigue and diarrhoea scores deteriorated postoperatively, but eventually resolved after 3–6 months.

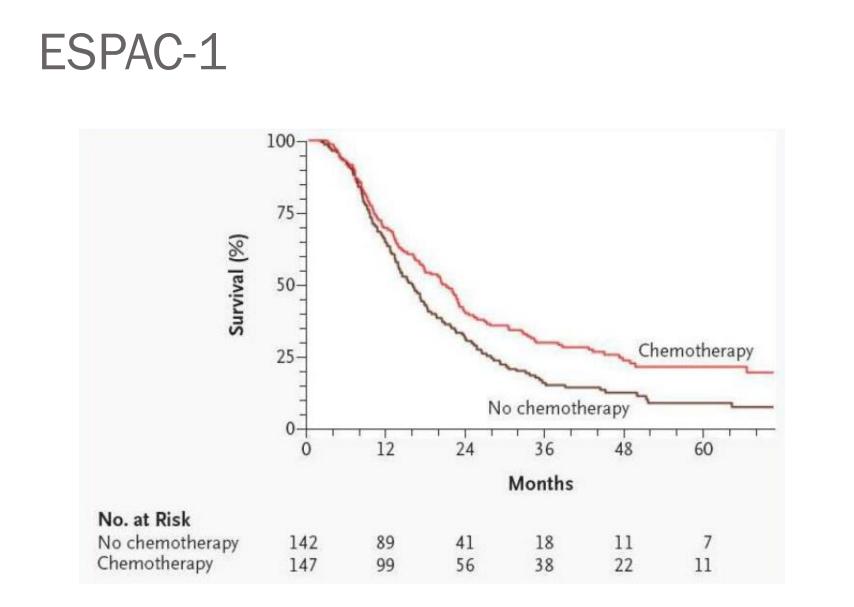

Outcomes for pancreatic cancer

- Depends on:
 - Type of cancer
 - Tumour biology
 - Extent of disease spread
 - Resection margins
 - Adjuvant/neoadjuvant treatment
 - Physical fitness

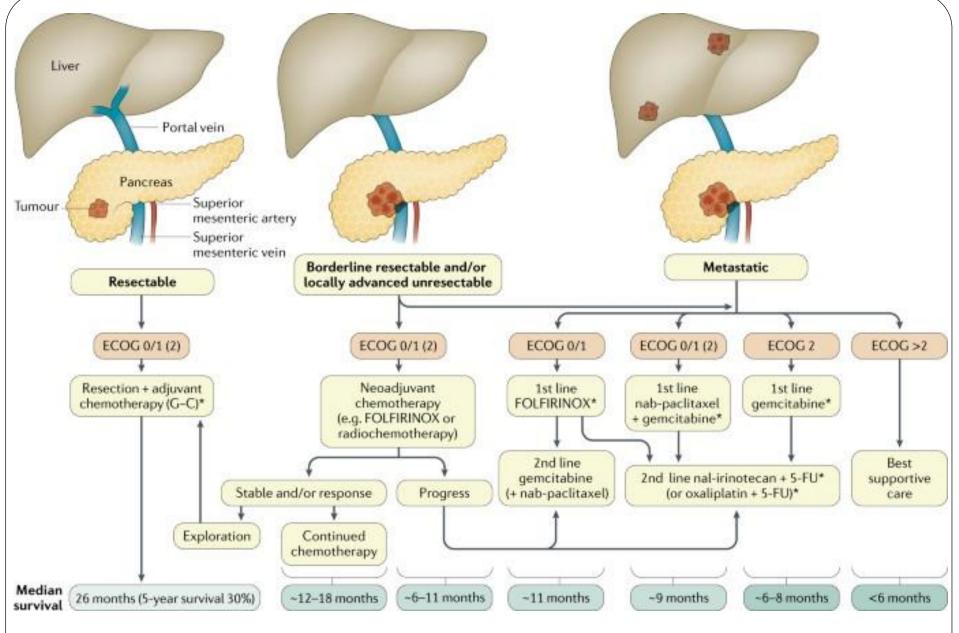
Periampullary tumours



Pancreatic ductCommon bile ductAmpullaDuodenum


Pancreatic cancers have worst prognosis of all periampullary tumors

Resection margin and nodal status affect prognosis in pancreatic cancer



Ann Surg 2008

n=357

Neoptolemos JP et al., NEJM 2004; 350:1200-1210.

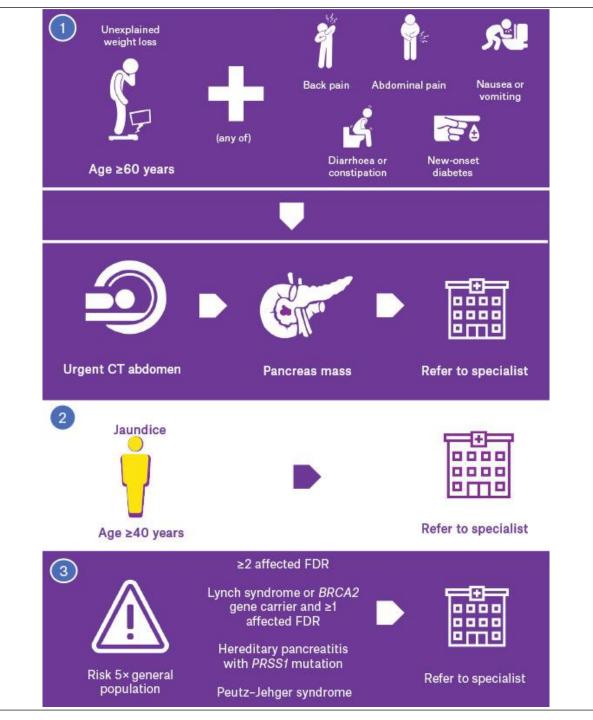
Neoptolemos, J.P., Kleeff, J., Michl, P. et al. Therapeutic developments in pancreatic cancer: current and future perspectives. *Nat Rev Gastroenterol Hepatol* **15**, 333–348 (2018). https://doi.org/10.1038/s41575-018-0005-x

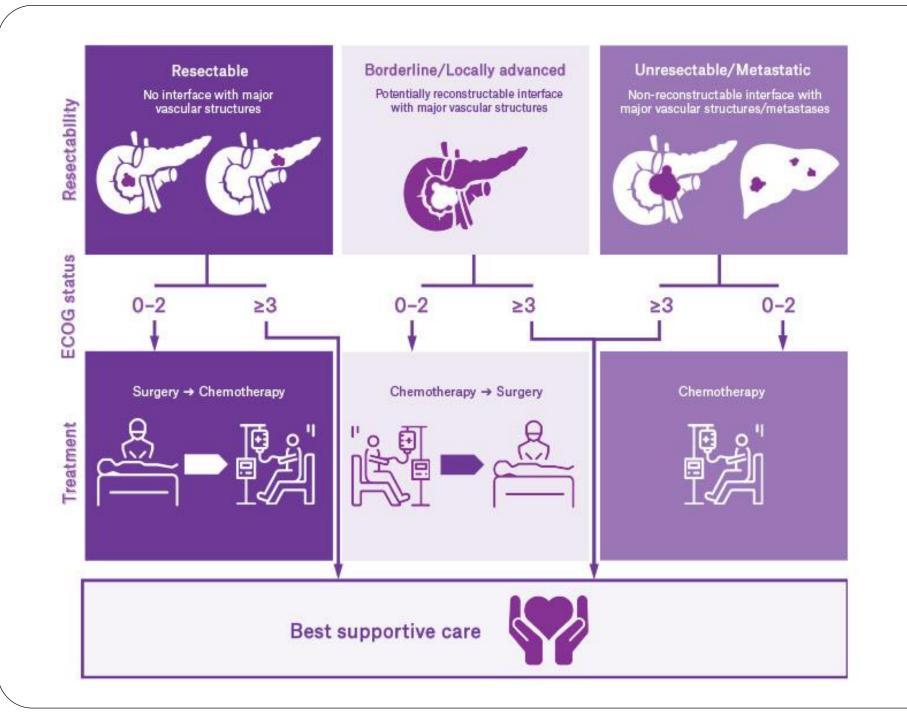
Surveillance

Pancreatic cancer in adults: diagnosis and management

NICE guideline [NG85] Published: 07 February 2018 Follow-up for resected pancreatic cancer

- 1.8.8 For people who have had resection, offer ongoing specialist assessment and care to identify and manage any problems resulting from surgery.
- 1.8.9 For people who have new, unexplained or unresolved symptoms after treatment, provide access to specialist investigation and support services.


TABLE 1


Current surveillance guidelines after resection for PDAC

Society	Recommendation	Evidence level
National Comprehensive	Clinical evaluation every 3-6 months for 2 years, then	Low-level expert
Cancer Network	annually	opinion (uniform)
	CA19-9, CT scan every 3-6 months for 2 years, then	Expert opinion
	annually	(nonuniform)
European Society of	Follow-up schedule discussed with patient, designed to avoid	Low level
Medical Oncology	emotional stress and economic burden for the patient	Expert opinion
	If CA19-9 is elevated before surgery, then reassess every 3	Expert opinion
	months for 2 years	
	Abdominal CT scan every 6 months	

PDAC pancreatic adenocarcinoma, CA carbohydrate antigen, CT computed tomography

Summary

- CTTAP with Pancreas protocol and PET CT for staging
- Biliary drainage to be considered only if bili likley to increase above 200-230 pre-op
- Palliative metal stents biliary/duodenal are preferable in comparison to bypass surgery for patients with short predicted survival
- No surgical technique is superior.
- Overall prognosis remains poor.
 - Resection and adjuvant therapy median survival 20–28 months.
 - Palliative chemotherapy median survival -12 months
 - Best supportive care median survival of <6 months.
- Surgery negatively influences QoL at short term.
- Eventually recovers to baseline values after 3–6 months.
- Follow up imaging not usually indicated in UK practice.

Thank you