

Precision Radiation Therapy for locally advanced unresectable pancreatic cancer

Outline of session

- Principles and practice of precision RT with a focus on Stereotactic Ablative Body Radiotherapy (SABR)
- Evidence base in Pancreatic Cancer
 Published data, Patient public input and UK Clinical
 Oncology perspectives
- Future developments on the horizon
 - Promise of newer technologies

Core principles for Precision RT

Image Guided RT = IGRT

Patient derived treatment volumes (personalised) Adaptive Treatment (on line imaging) Motion management

• High Dose to Target Volume

Increasing Biological effective doses (BED)

dose per treatment higher than conventional regimes (e.g. SABR) Addition of drug to sensitise to RT or RT to sensitise to drug (e.g immune priming) or Drug to protect normal tissue to allow increase dose to tumour

Maximal sparing of normal tissue

Dose sculpting

Knowing when / how to compromise dose / target coverage

0

Pancreatic RT challenges

Target Volume delineation

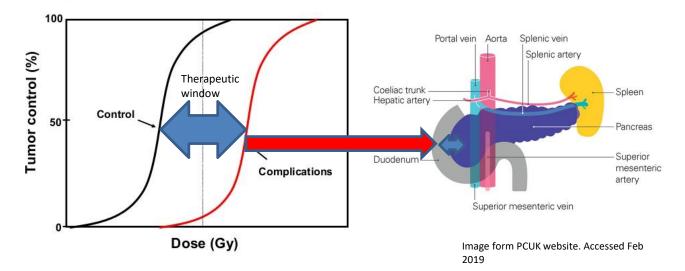
Difficult to outline

Imaging underestimates tumour

•Organs at Risk

Close proximity

Narrow therapeutic index


Motion

Principles of radiation therapy in Pancreatic tumours

Therapeutic Index

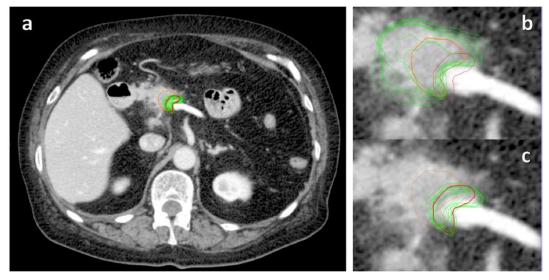
Linear Accelerators

SABR

Stereotactic ablative body radiotherapy (SABR) refers to the precise irradiation of an imagedefined extra-cranial lesion with the use of high radiation dose in a small number of fractions

UK SABR Consortium guidelines 2013

Radiotherapy and Oncology 121 (2016) 86–91



Pancreatic cancer SBRT

Conformity analysis to demonstrate reproducibility of target volumes for Margin-Intense Stereotactic Radiotherapy for borderline-resectable pancreatic cancer

Daniel L.P. Holyoake^{a,e}, Maxwell Robinson^{a,e}, Derek Grose^b, David McIntosh^b, David Sebag-Montefiore^{c,d}, Ganesh Radhakrishna^d, Neel Patel^e, Mike Partridge^a, Somnath Mukherjee^{a,e}, Maria A. Hawkins^{a,e,*}

*CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford; b"The Beatson West of Scotland Cancer Centre, Glasgow; "University of Leeds, CRUK Leeds Centre; d Leeds Cancer Centre, St James's University Hospital, Leeds; and "The Churchill Hospital, Oxford, UK

CrossMark

Target volume definition

Comparison of investigator-delineated gross tumour volumes and quality assurance in pancreatic cancer: Analysis of the on-trial cases for the SCALOP trial

The Christie

NHS Foundation Trust

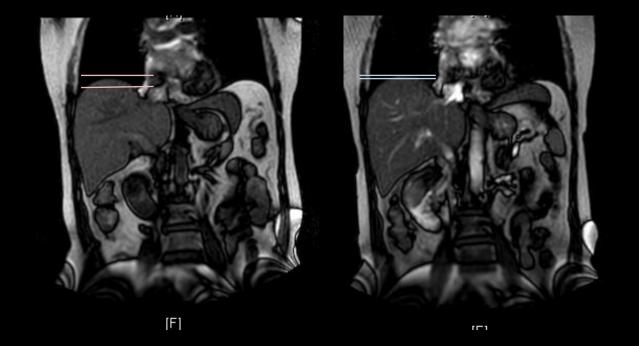
Emmanouil Fokas^{a,1}, Emiliano Spezi^{b,1}, Neel Patel^c, Chris Hurt^d, Lisette Nixon^d, Kwun-Ye Chu^{a,c}, John Staffurth^{e,f}, Ross Abrams^g, Somnath Mukherjee^{a,c,*}

*Department of Oncology, CRUK/MRC Institute for Radiation Oncology, University of Oxford; ^bSchool of Engineering, Cardiff University: ^cOxford University Hospital NHS Foundation Trust; ^dWales Cancer Trials Unit, Centre for Trials Research: * Institute of Cancer and Genetics, Cardiff University; ^cCardiff NCR RTQA Centre, Velindre NHS Trust, UK; * Department of Radiation Oncology, Rush University Medical Center, Chicago, USA

			Univariable analysis				Multivariable analysis			
			n	Odds ratio	95% CIs	р	n	Odds ratio	95% CIs	р
	gsGTV	continuous	58	1.02	0.98-1.05	0.341	58	0.99	0.90 1.04	0.876
	JCI GTV	<0.7	32	1.00			32	1.00		
		≥0.7	26	5.71	1.81-18.08	0.003	26	7.43	1.86-29.7	0.005
	JCI PTV	<0.8	28	1.00						
		≥0.8	30	2.5	0.84-7.42	0.099				
	Trial arm	Cem	35	1.00			27	1.00		
		Cape	35	0.03	0.24-1.02	0.555	31	0.57	0.15-2.21	0.417
	WHO PS	0	29	1.00			24	1.00		
		1-2	41	1.41	0.54-3.73	0.484	34	1.45	0.39-5.43	0.583
	Sex	Male	40	1.00			34	1.00		
		Female	30	2.12	0.81-5.59	0.127	24	2.94	0.77-11.21	0.113
	Age	<65	36	1.00			30	1.00		
		≥65	34	0.55	0.21-1.42	0.216	28	1.43	0.33-6.11	0.632
	RT fractions	0-26	12	1.00			10	1.00		
		27+	50	0.47	0.13-1.66	0.240	48	0.57	0.11-3.03	0.508

Pancreatic cancer

MRI-based tumor motion characterization and gating schemes for radiation therapy of pancreatic cancer

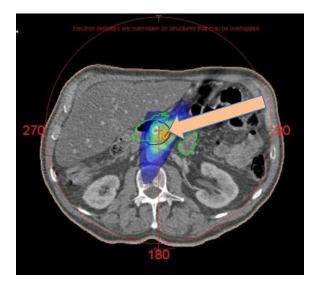

Hanne D. Heerkens^{a,*}, Marco van Vulpen^a, Cornelis A.T. van den Berg^a, Rob H.N. Tijssen^a, Sjoerd P.M. Crijns^a, Izaak Q. Molenaar^b, Hjalmar C. van Santvoort^b, Onne Reerink^a, Gert J. Meijer^a

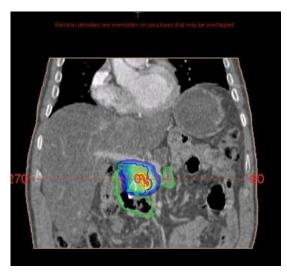
*Department of Radiotherapy; and ^bDepartment of Surgery, University Medical Center Utrecht, The Netherlands

Motion management strategies crucial for precision RT delivery

K

Slide courtesy John Rogers & Lisa McDaid


The evidence build **SABR FOR PANCREATIC CANCER**


SABR pancreas

• High dose to vessel contact

 Dose sculpting away from duodenum

SPARC trial – multicentre UK trial (CI = Maria Hawkins)

Pooled analysis SABR for LAPC

- 19 published series (1009 pts); follow up 6-21 months
- Heterogeneous with including LAPC and BRPC, different SACT schedules and regimens, variable dose- fractionation, varying platforms
- BED₁₀ 37.5 120 Gy
- 1 year OS = 51.6% (13 trials) median OS = 5.7 47 months
- Local Control rates = 72.3% (95%CI 58.5%- 79%) Total dose and higher fractions significantly better 1year LCR
- PFS = 4.8 27 months

• Toxicity = late G3/4 < 11% ; in 6 series g3/4 rate 0%

Petrelli et al. IJROBP 2017: 97(2)

Level 1B evidence

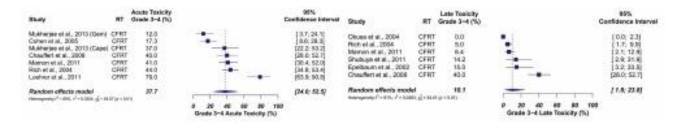
Original Article

Conventionally fractionated radiation therapy versus stereotactic body radiation therapy for locally advanced pancreatic cancer (CRiSP): An international systematic review and meta-analysis

Leila T. Tchelebi MD 🔀, Eric J. Lehrer MD, Daniel M. Trifiletti MD, Navesh K. Sharma DO, Niraj J. Gusani MD, MS, Christopher H. Crane MD, Nicholas G. Zaorsky MD

First published: 03 March 2020 | https://doi.org/10.1002/cncr.32756 | Citations: 5

2 year survival


Study	RT	2-Yr OS (%)		95% Confidence Interval
Mukherjee et al., 2013 (Gen) CFRT	0.0		[0.0; 2.5]
Mukherjee et al., 2013 (Cap	e) CFRT	9.7		[2.3; 21.3]
Cohen et al., 2005	CFRT	11.0		[4.2; 20.5]
Loehrer et al., 2011	CFRT	11.6		[3.2; 24.3]
Cardenas et al., 2011	CFRT	12.6	-#-	[7.1; 19.5]
Rich et al., 2004	CFRT	13.2	-	[7.5; 20.2]
Mamon et al., 2011	CFRT	14.2		[7.4; 22.8]
Chauffert et al., 2008	CFRT	15.0		[7.1; 25.1]
Shubuya et al., 2011	CFRT	20.0		[6.1; 39.3]
Epelbaum et al., 2002	CFRT	22.8		[7.6; 43.2]
Okusa et al., 2004	CFRT	24.0		[12.5; 37.9]
Hammel et al., 2016	CFRT	25.7	- 	[20.7; 31.1]
Random effects model		13.7	-	[8.9; 19.3]
	2-yı	r OS 13.7% (C	0 20 40 60 80 2-Yr Overall Survival (%) FRT) vs 26.9% (SBRT), p=	
Study	RT 2	-Yr OS (%)		Confidence Interval
Schellenberg et al., 2008	SBRT	16.5		[3.0; 37.9]
Herman et al., 2014	SBRT	18.2		[8.8; 30.1]
Schellenberg et al., 2011		23.9		[8.3; 44.5]
	SBRT	25.7		[13.0; 41.0]
Song et al., 2015	SBRT	28.8		[18.1; 40.9]
Mahadevan et al., 2011	SBRT	32.6		[19.0; 47.9]
Lin et al., 2014	SBRT	47.6		[26.6; 69.0]
Random effects model		26.9	-	[20.6; 33.6]
Heterogeneity: $J^2 = 23\%$, $\tau^2 = 0.0022$, $\chi^2_{\mu} = 7.74$ (p = 0.26)		C.C.C.C.C.S	r r r r r	
	0		0 20 40 60 80 2-Yr Overall Survival (%)	100

Superior 2Yr OS favouring SABR (statistically significant p< 0.05)

Side effect profile

Grade 3-4 Acute Tox 37.7% (CFRT) vs 5.6 % (SBRT), p=0.013

Grade 3-4 Late Tox 10.1% (CFRT) vs 9.0 % (SBRT), p=0.85

Less acute toxicity and trend towards less late toxicity favouring SABR

Potential benefits of SABR

Reduction in number of treatment visits

Jones, C.M., et al. Br J Cancer 123, 709–713 (2020).

- Longer freedom from treatment time / PFS Suker et al. EClinicalMed 17(2019)
- Improved local control

Tangible benefit in reduction in pain Herman et al. Cancer April 2015

• Effects of SABR beyond primary disease control Griffin et al. IJROBP 2020. 107(4); 766-778

Improved tolerability

RCR Members Access Subscribe Claim

LETTER | VOLUME 33, ISSUE 3, E198, MARCH 01, 2021

Ţ

Purchase

Stereotactic Ablative Body Radiotherapy for Locally Advanced Unresectable Pancreatic Cancer: Current Views of the Public and Professionals

A. Brocklehurst

• C.L. Barker

• S. Mukherjee

• ... A. Lakey

• H. Smith

• G. Radhakrishna

• Show all authors

Published: November 03, 2020 • DOI: https://doi.org/10.1016/j.clon.2020.10.015 •

Check for updates

Patient- carer perspective – PCUK project The Christie

• The PPE was conducted in a virtual format

online survey (8 participants) or join an online focus group with Consultant Clinical Oncologists (5 participants).

Baseline knowledge was low with 50% having no prior knowledge of SABR and 75% unaware of its role in LAPC.

If SABR was offered 92.3% (12 of 13) would opt for this as the treatment of choice over CRT discussions highlighted that the rationale for this approach should be clearly presented.

The group emphasised quality of life as a key potential advantage of SABR, 100% feeling avoidance of chemotherapy, and 87.5% reduction in hospital visits - important or very important.

75% were prepared to travel for access to SABR.

Clinical Oncologists perspective

- 25 HPB Clinical Oncology consultants across 21 UK centres.
- Support for SABR in LAPC was high:
- 100% felt it would be supported by local MDT and 96% agreed to offer within this indication.
- Capacity for implementation was limited with only 68% of centres able to adapt current
- equipment for abdominal SABR and 72% requiring support to establish the service in their centre.
- Suggestions included external peer review (73% support), CPD accredited training (68% support) and mentoring from another institution (43% support).

Dose fractionation schedules

Selection based on expertise

Usually adapted based on Organ at Risk tolerances / Treatment volume

Key outcome data SCALOP 2

	50.4 Gy in 28# (n= 45)	60 Gy in 30# (n= 46)	Events* within 12 months of registration n (%)	50.4 Gy in 28# Arms A+B (n= 45)	60 Gy in 30# Arms C+D (n= 46)	
			Local progression (with or without metastasis)	15 (33.3)	11 (23.9)	
Induction chemo			Metastasis (no local progression)	11 (24.4)	16 (34.8)	
Total no. of patients with grade 1-5 SAEs	20 (44.4)	30 (65.2)	Deaths	11 (24.4)	12 (26.1)	
Total no. of patients with SARs/SUSARs	13 (28.9)	22 (47.8)	Evidence of local progression (with or without metastasis)	7	3	
Patients with grade 3-4 SAEs	13 (28.9)	24 (52.2)	No local progression Deaths before any known	4 0	9 0	
Patients with grade 3-4 SARs/SUSARs	8 (17.8)	16 (34.8)	progression			
CRT	(40 started CRT)	(39 started CRT)				
Total no. of patients with grade 1-5 SAEs	9 (20)	6 (13)	Clida informat	ation courtoon Dr. C		
Total no. of patients with SARs/SUSARs	5 (11.1)	4 (8.7)	Slide information courtesy Dr. S Mukherjee			
Patients with grade 3-4 SAEs	8 (17.8)	6 (13)	,			
Patients with grade	5 (11.1)	4 (8.7)				

2 A CARCÍCUEARO

Fractionation schedules

- Chemo radiation
 - 1.8 2Gy per fraction scalop 2

ESMO 2022

28 – 30 treatments over 5.5 to 6 weeks

15 fraction option

As per pre op panc

Usually concurrent with chemo (capecitabine or gemcitabine)

Can be RT alone if ultrahypofractionated to 67.5Gy in 15 fractions

- Koay EJ, Hanania AN, Hall WA, et al. Dose-Escalated Radiation Therapy for Pancreatic Cancer: A Simultaneous Integrated Boost Approach. *Pract Radiat Oncol.* 2020;10(6):e495-e507. doi:10.1016/j.prro.2020.01.012
- 6. Colbert LE, Moningi S, Chadha A, et al. Dose escalation with an IMRT technique in 15 to 28 fractions is better tolerated than standard doses of 3DCRT for LAPC. Adv Radiat Oncol. 2017;2(3):403-415. doi:10.1016/j.adro.2017.02.004
- 7. Reyngold M, Parikh P, Crane CH. Ablative radiation therapy for locally advanced pancreatic cancer: techniques and results. *Radiation Oncology*. 2019;14(1):95. doi:10.1186/s13014-019-1309-x

Crane CH. Hypofractionated ablative radiotherapy for locally advanced pancreatic cancer. J Radiat Res. 2016;57(S1):i53-i57. doi:10.1093/jrr/rrw016

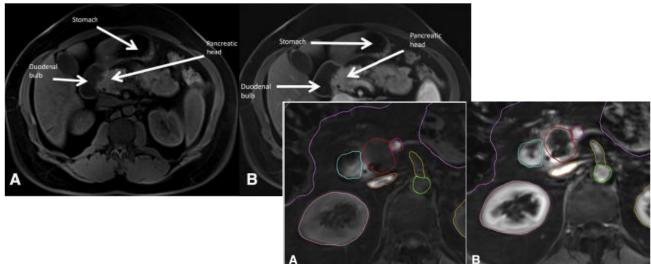
9. Krishnan S, Chadha AS, Suh Y, et al. Focal Radiation Therapy Dose Escalation Improves Overall Survival in Locally Advanced Pancreatic Cancer Patients Receiving Induction Chemotherapy and Consolidative Chemoradiation. *International Journal of Radiation Oncology*Biology*Physics*. 2016;94(4). doi:10.1016/j.ijrobp.2015.12.003

The promise of newer technology

IMPROVING THE THERAPEUTIC INDEX

MR_Linac

CrossMark

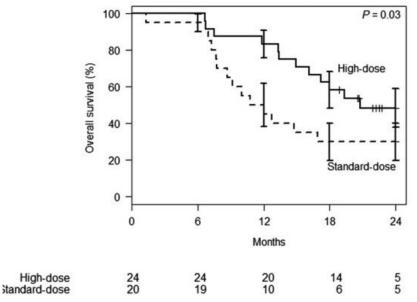

Original Report

Recommendations for MRI-based contouring of gross tumor volume and organs at risk for radiation therapy of pancreatic cancer

H.D. Heerkens MD^a, W.A. Hall MD^b, X.A. Li PhD^b, P. Knechtges MD^c, E. Dalah PhD^{b,d}, E.S. Paulson PhD^b, C.A.T. van den Berg PhD^a, G.J. Meijer PhD^a, E.J. Koay MD, PhD^e, C.H. Crane MD^e, K. Aitken MD^f, M. van Vulpen MD, PhD^a, B.A. Erickson MD^{b,*}


^aDepartment of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands ^bDepartment of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin ^cDepartment of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin ^dMedical Diagnostic Imaging Department, College of Health and Science, University of Sharjah, Sharjah, Dubai ^eDepartment of Radiation Oncology, Royal Markerson Hospital, Houston, Texas ^fDepartment of Radiation Oncology, Royal Marker Mospital London, England

Received 8 September 2016; accepted 10 October 2016



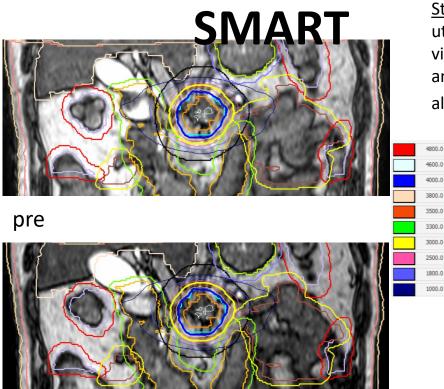
Dose escalation with MRgRT

Multicentre, retrospective cohort form 5 centres Improved outcomes with BED > 70Gy

- 2 year OS high dose vs. standard dose = 49% vs. 30 %
- 2 year FFLP high dose vs. standard dose = 77% vs. 57%

Rudra S, Jiang N, Rosenberg SA, et al. Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med. 2019;8(5):2123-2132.

Stereotactic MR guided Adaptive Radiotherapy SMART


Development of Phase 2 studies underway

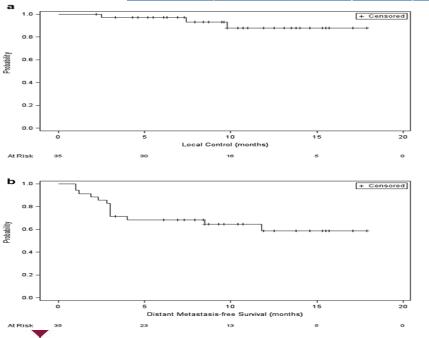
Opportunity to evaluate dose escalation with MRgRT

SABR MRg ART and

Post

Stereotactic MR-guided online adaptive radiotherapy (SMART) utilises advanced image guidance with sufficient quality to visualise the tumour and OAR and adapt the plan to daily anatomy

allowing for safe dose escalation.



BASIC ORIGINAL REPORT | VOLUME 11, ISSUE 2, P134-147, MARCH 01, 2021

Ablative 5-Fraction Stereotactic Magnetic Resonance–Guided Radiation Therapy With On-Table Adaptive Replanning and Elective Nodal Irradiation for Inoperable Pancreas Cancer

Michael D. Chuong, MD <u>Alonso N. Gutierrez</u>, PhD, MBA • Show all authors

Open Access
Published: September 15, 2020
DOI: https://doi.org/10.1016/j.prro.2020.09.005

- Single inst n= 35 50Gy in 5F ; BED 100Gy₁₀ > 90% Induction SACT G3 acute & late toxicity 2.9% 1 Yr LCR = 87.8%
- 1 Yr DMFS = 63.1%
- I yr OS = 58.9%

Roll out of SABR will be underway soon

• First phase within next few months with national roll out from November onwards

Access to treatment

•Determine pathways and MDTs aware and refer appropriately

3

Need for clinical trials

Biomarker driven trials Precision oncology
integrating technologies , e.g. SMART (Stereotactic MR-guided Adaptive RT) and PBT
EMERALD trial Som Mukherjee – oxford
Accelerate drug-RT studies integrating SABR type options into Systemic treatment and us of newer agents e.g Immuno
GRECO – Ajith Thankamma - Cambridge

Acknowledgements

- Patients and carers
- PCUK team
 - Dr C Macdonald
 - Harri Smith and Anna Lakey
 - Abi Lester
- UK HPB Clinical Oncology
- Pancreatic Technical RT teams at the Christie and Leeds

