

The role of interventional endoscopy in pancreatic cancer

Ana Carmona Carrasco

Advanced Clinical Practitioner

HPB Medicine

St James University hospital

Case 1: Mrs A

- 57 F
- Known mild Multiple Sclerosis.
 Fit and well
- Admitted 3 w. nausea & vomiting
- Painless jaundice
- wt loss

Case 1: Mrs A

CT:

- Mass in pancreatic head
- Dilated CBD & Intrahepatic ducts
- Locally advanced pancreatic malignancy (SMA & PV involved)
- Distal duodenal infiltration with distended stomach

MDT:

- Inoperable pancreatic tumour
- For EUS + ERCP + Duodenal Stent

Case 1: Mrs A

- Under GA
- Ryles tube in situ on TPN
- EUS + FNB into HOP solid mass for histology
- ERCP:
 - CBD brushings for cytology
 - Biliary stent 6 cm
 - Duodenal stent across D3-D4 stricture

Indications for EUS

Diagnostic for benign and malignant disease (including staging)

Tissue acquisition

Therapeutic

Inter-luminal anastomoses (bile duct, gallbladder, EDGE, gastrojejunostomy)

Intra-lesional ablative therapy (RFA- especially of NET/ pancreatic mets)

Diagnostic EUS for HPB disease

Staging cancer

- eg duct involvement in ampullary polyps
- Vascular involvement in pancreatic cancer

Benign biliary disease

- CBD stones /microlithiasis
- Chronic pancreatitis

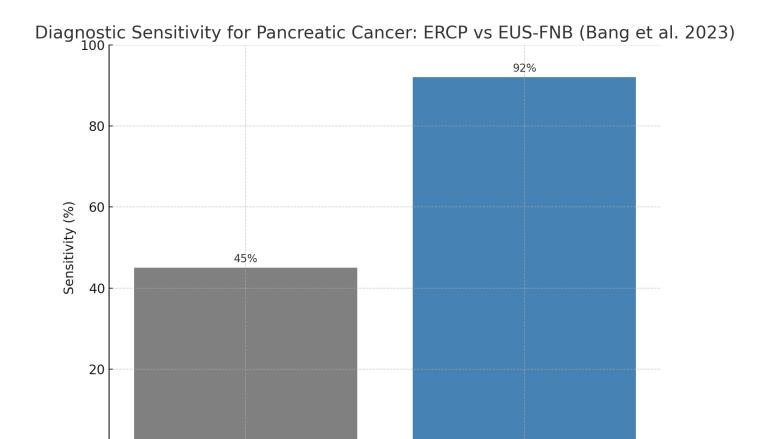
EUS for Tissue Acquisition

- Biliary strictures/ masses
- Pancreatic solid masses
 - Adenocarcinoma/ lymphoma/ mets
 - IgG4 disease/ chronic pancreatitis
 - NETs
- Pancreatic cystic lesions if diagnosis not clear or suspected neoplasia

Cautions

- Significantly safer than ERCP but does have risks particularly with FNB
- 1-2% risk of pancreatitis
- Bleeding
- Infection in sampled area, especially cysts

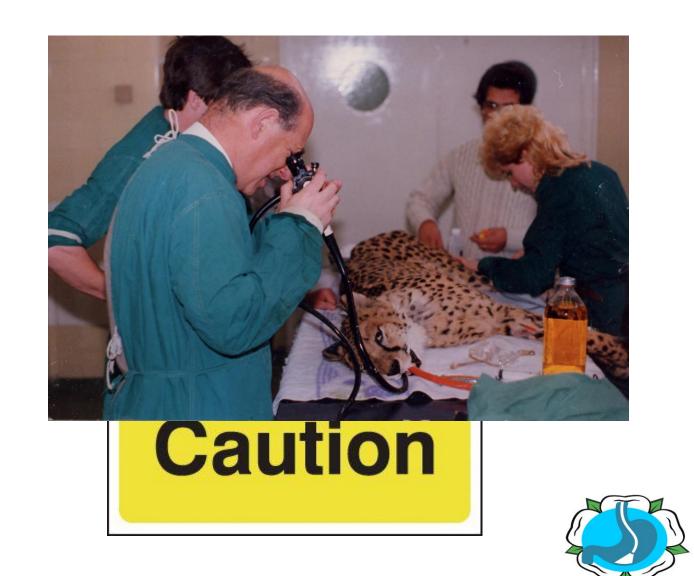
Questions for audience

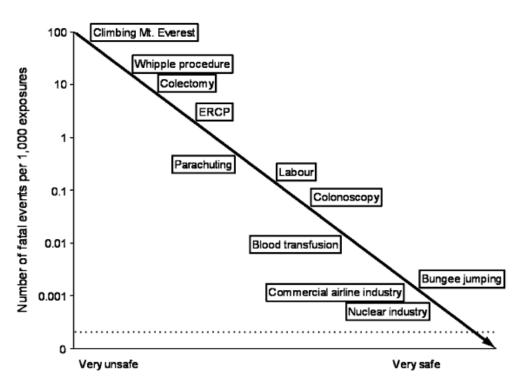

 Would you do EUS and biopsy for every patient presenting with a new pancreatic cancer for palliative chemo?

- Yes
- No
- I don't know

Sampling sensitivity

EUS-FNB (Bang et al. 2023)


ERCP Brushings


Indications for ERCP

ERCP is dangerous and should be used for therapeutic interventions only

ERCP: A risky business

ERCP is the riskiest routinely performed endoscopic procedure.

Complications often in those who need it the least

Specific complications 6.9% Severe (>10 nights HS; ICU or surgery) 1.7% Deaths 0.33%

50,000 ERCP/yr =850 severe AE & 165 deaths

Fig. 1. Safety based on number of fatal events. Adopted from Amalberti R. Five system barriers to achieving ultrasafe health care. Ann Intern Med 2005; 142:756–764.

30 day mortality post ERCP

- 20-25% 30-day mortality in inoperable hilar malignancy in UK
- RICOCHET study- ERCP mortality 15% (21% unresectable disease, 6% resectable)
- Pancreatic Cancer UK-report "trauma" suffered by some patients from endoscopic procedure
- Patient selection vital

PANCREAS

AND PANCREATIC DISEASES AND SCIENCES

Articles & Issues ♥ For Authors ♥ Journal Info ♥

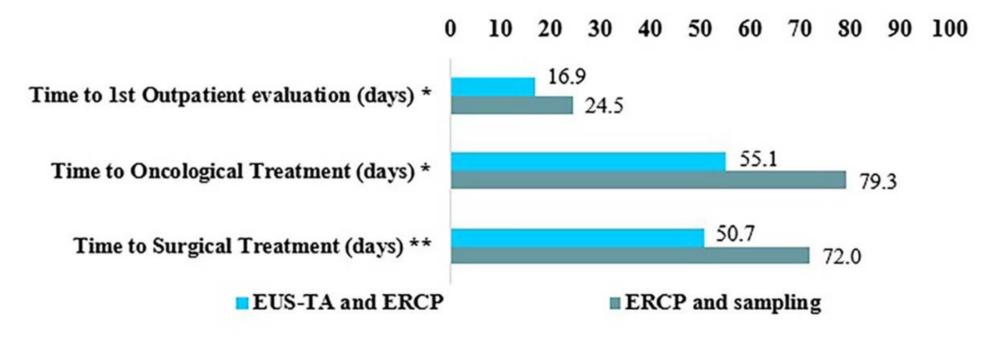
Share

Favorites

ORIGINAL ARTICLE

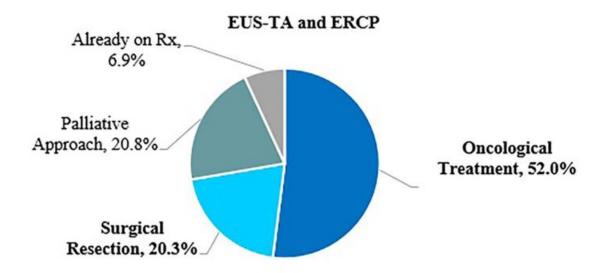
Combined Endoscopic Ultrasonography and Endoscopic **Retrograde Cholangiopancreatography in Patients With Malignant Distal Biliary Obstruction Is Associated With Reduced Time to Oncological Therapy Compared With ERCP and Sampling Alone**

(b) Gauci, James MSc, MRCP (UK)*; On, Wei MRCP(UK)†; Paranandi, Bharat BSc, FRCP(UK)†; Huggett, Matthew Thomas PhD, FRCP(UK)[†]; Everett, Simon FRCP(UK)[†]


Author Information ⊗

Pancreas 54(2):p e101-e106, February 2025. | DOI: 10.1097/MPA.000000000002401

BUY



* p < 0.05

** p = not significant

FIGURE 1. Mean times to first patient evaluation and treatment.

ERCP and sampling

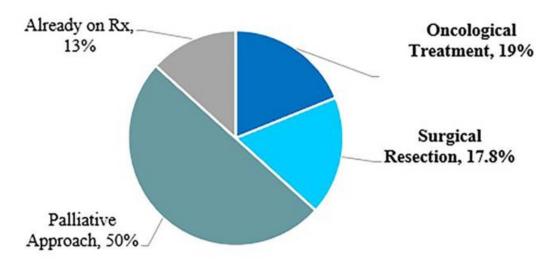


FIGURE 2. Difference in choice of initial therapeutic approach between groups.

Case 2: Mr B

66 M

Background:

- Known locally advanced HOP cancer
- Not suitable for surgery
- History of hypertension, asthma.
- Smoker

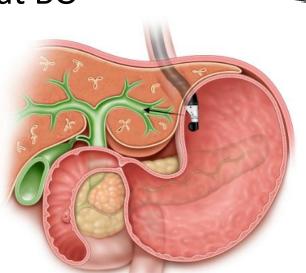

PC:

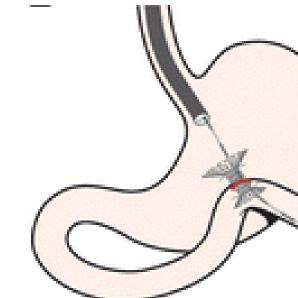
- Initially presented with GOO underwent Duodenal stent insertion
- Whilst getting worked up for palliative chemo (8 weeks later), represents with GOO again and jaundice

Case 2: Mr B

 CT: twisted and fractured duodenal stent and biliary dilatation down to HOP mass which is enlarging

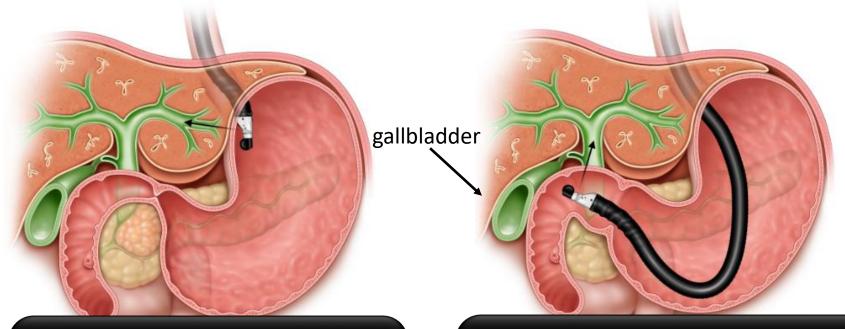
Question for audience


- Are there any other options for patients with biliary and duodenal obstruction?
- ERCP
- EUS
- Surgery
- Do nothing
- PN and PTC



Case 2: Mr B

- EUS guided Gastrojejunostomy to treat GOO
- EUS guided BD (Hep-Gastro) to treat BO


Malignant distal biliary obstruction

- ERCP standard of care for stenting
- Increasingly used with EUS to get histology (>90% diagnostic accuracy)
- Options in failed ERCP
 - re-attempt ERCP in a pancreatic centre
 - PTC/ PTBD
 - EUS-guided drainage

EUS-Guided Bile Duct Drainage

Intrahepatic

Left lobe accessed from stomach

- Hepaticogastrostomy
- Rendezvous
- Antegrade

Extrahepatic

Common bile duct accessed from duodenal bulb

- Choledochoduodenostomy
- Rendezvous

EUS-BD safety/efficacy

Efficacy and safety of EUS-guided biliary drainage in comparison with percutaneous biliary drainage when ERCP fails: a systematic review and meta-analysis

Reem Z. Sharaiha, MD, FASGE, Muhammad Ali Khan, MD, Faisal Kamal, MD, Amy Tyberg, MD, Claudio R. Tombazzi, MLS, Bilal Ali, MD, Claudio Tombazzi, MD, Michel Kahaleh, MD, FASGE¹

New York, New York; Memphis, Tennessee, USA

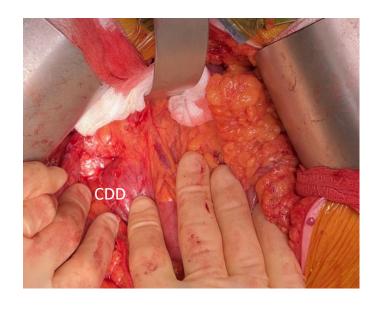
			Odds Ratio		Odds Ratio		
Study or Subgroup log[O	dds Ratio] SE	Weight	V, Random, 95% C	Year	IV, Random, 95% CI		
1.2.1 RCTs							
Artifon, 2012	-0.077 2.03	3.0%	0.93 [0.02-49.49]	2012			
Lee, 2015	-0.0408 0.7517	21.7%	0.96 [0.22-4.19]	2015			
Subtotal (95% CI)		24.6%	0.96 [0.24-3.81]				
Heterogeneity: $Tau^2 = 0.00$;	$Chi^2 = 0.00, df = 1$	(P = .99); I	$^{2}=0\%$				
Test for overall effect: $Z = 0$							
1.2.2 Observational studie	2S						
Khashab, 2014	-1.3093 1.6816	4.3%	0.27 [0.01-7.29]	2014 —	•		
Torres-Ruiz, 2016	-1.3863 0.7281	23.1%	0.25 [0.06-1.04]	2016			
Sportes, 2016	-0.3285 0.6797	26.5%	0.72 [0.19-2.73]	2016			
Sharaiha, 2016	-1.5141 0.7559	21.4%	0.22 [0.05-0.97]	2016			
Subtotal (95% CI)		75.4%	0.35 [0.16-0.77]		•		
Heterogeneity: $Tau^2 = 0.00$;	$Chi^2 = 1.74, df = 3$	(P = .63); I	$^{2}=0\%$				
Test for overall effect: $Z = 2$.60 (P = .009)						
Total (95% CI)		100.0%	0.45 [0.23-0.89]		•		
Heterogeneity: $Tau^2 = 0.00$;	$Chi^2 = 3.26, df = 5$	(P = .66); I	$^{2}=0\%$	0.01	0.1 1 10 100		
Test for overall effect: $Z = 2.28 (P = .02)$					Favors [EUS-BD] Favors [PTBD]		
Test for subgroup difference	es: Chi ² = 1.52, df =		. 4.6.5 [265 66]				

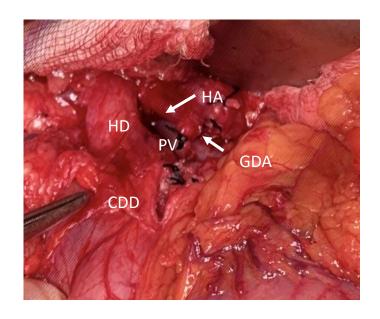
Clinical Success

EUS-BD safety/efficacy

Efficacy and safety of EUS-guided biliary drainage in comparison with percutaneous biliary drainage when ERCP fails: a systematic review and meta-analysis

Reem Z. Sharaiha, MD, FASGE, Muhammad Ali Khan, MD, Faisal Kamal, MD, Amy Tyberg, MD, Claudio R. Tombazzi, MLS, Bilal Ali, MD, Claudio Tombazzi, MD, Michel Kahaleh, MD, FASGE¹


New York, New York; Memphis, Tennessee, USA


Test for subgroup differences: $Chi^2 = 0.04$, df = 1 (P = .84), $I^2 = 0\%$

Study or Subgroup log	n[Odds Patio]	T Woight	Odds Ratio	l Vaan	Odds Ratio	
1.3.1 RCTs	g[Odds Natio]	E Weight	IV, Random, 95% C	Year	IV, Random, 95% CI	
	0.5070 1.051	9 730/	0.55 [0.07-4.32]	2012		
Artifon, 2012	-0.5978 1.051					
Lee, 2015	-1.5606 0.732		0.21 [0.05-0.88]	2015		
Giovannini, 2015 Subtotal (95% CI)	-1.6094 0.707	'3 11.3% 29.5%	0.20 [0.05-0.80] 0.25 [0.10-0.61]	2015	•	
Heterogeneity: $Tau^2 = 0$.00; Chi ² = 0.72, df =	2 (P = .70);	$I^2 = 0\%$			
Test for overall effect: Z						
1.3.2 Observational stu	udies					
Bapaye, 2013	-1.2379 0.657	1 12.0%	0.29 [0.08-1.05]	2013		
Khashab, 2014	-2.4079 0.560	13.5%	0.09 [0.03-0.27]	2014		
Bill, 2015	-0.5447 0.59	7 13.0%	0.58 [0.18-1.87]	2015		
Sharaiha, 2016	-4.6052 1.174	8 6.3%	0.01 [0.00-0.10]	2016←		
Torres-Ruiz, 2016	-1.6607 0.509	5 14.4%	0.19 [0.07-0.52]	2016		
Sportes, 2016	0.157 0.711	7 11.2%	1.17 [0.29-4.72]	2016		
Subtotal (95% CI)		70.5%	0.21 [0.08-0.58]		•	
Heterogeneity: $Tau^2 = 1$.	.07; Chi ² = 17.81, df	= 5 (P = .003)	3); $I^2 = 72\%$			
Test for overall effect: Z		•				
Total (95% CI)		100.0%	0.23 [0.12-0.47]		•	
Heterogeneity: $Tau^2 = 0$	62: Chi ² = 18.53 df	= 8 (P = .02)		—		—
Test for overall effect: Z		J (1 = .02)	, . = 37 /0	0.00		1000
Test for subgroup differ	, ,	f _ 1 /D _ 0/	1) 12— 00/		Favors [EUS-BD] Favors [PTBD]	

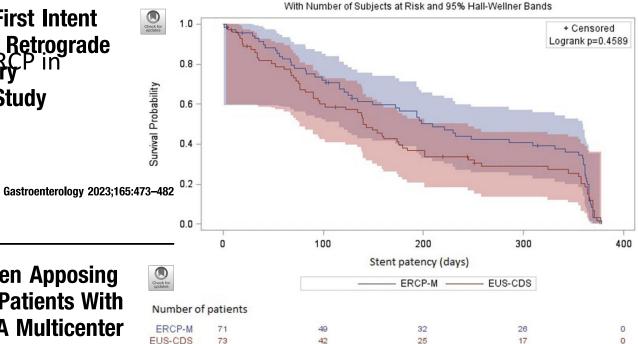
Adverse **Events**

EUS CDD and Surgery

Biliary drainage prior to pancreatoduodenectomy with endoscopic ultrasound-guided choledochoduodenostomy versus conventional ERCP: propensity score-matched study and surgeon survey

- OPEN ACCESS
- Consecutive patients who underwent PPD after preop biliary drainage
- Primary outcome was major postoperative complications
- Propensity score-matching (1:3) analysis was performed
- 42 EUS-CDS, 895 ERCP
- No increase in rate of complications

EUS-BD vs ERCP?


Gastroenterology 2023:165:1249-1261

Endoscopic Ultrasound-Guided Biliary Drainage of First Intent With a Lumen-Apposing Metal Stent vs Endoscopic Retrograde Enoiangiopancie atography in Malignant Bistal Biliary Pin Malignant Bistal Biliary Pin Distruction: A Multicenter Randomized Controlled Study (ELEMENT Trial)

Reduced post procedure pancreatitis risk

ENDOSCOPY

Shorter time, less fluoroscopy **EUS-Guided Choledocho-duodenostomy Using Lumen Apposing** Stent Versus ERCP With Covered Metallic Stents in Patients With Unresectable Malignant Distal Biliary Obstruction: A Multicenter Randomized Controlled Trial (DRA-MBO Trial)

Product-Limit Survival Estimates

Figure 3. Kaplan-Meier curve for stent dysfunction after EUS-CDS vs ERCP-M.

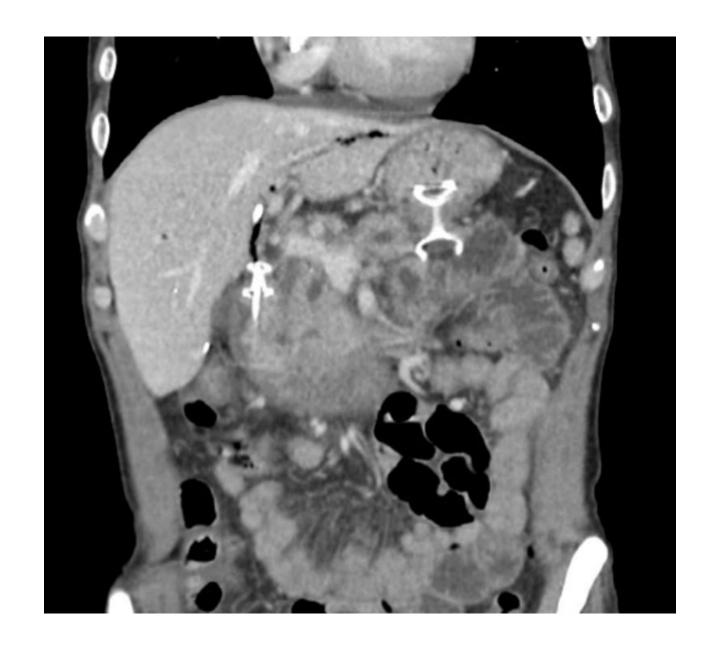
EUS-gastrojejunostomy

- Laparoscopic gastrojejunostomy standard of care
 - Surgically unfit patients
 - Duodenal stenting often has poor functional result

- EUS-GJ with LAMS is a minimally invasive alternative
 - More feasible with development of 20mm diameter LAMS
 - Data limited

EUS-gastrojejunostomy

Considered in place of lap-GJ in malignant GOO


Superior to duodenal stenting

Patients with good PS

Patients likely to survive > 3 months

The Lancet Gastroenterology & Hepatology

Volume 9, Issue 2, February 2024, Pages 124-132

Articles

Endoscopic ultrasonography-guided gastroenterostomy versus uncovered duodenal metal stenting for unresectable malignant gastric outlet obstruction (DRA-GOO): a multicentre randomised controlled trial

- 97 patients
- 1:1 randomisation stenting or EUS-GJ
- Stent patency better in GJ group
 - (HR= 0.13; p<0.0001)
- Symptoms better in GJ group
 - (mean= 2.41; p=0.012
- No difference in complications

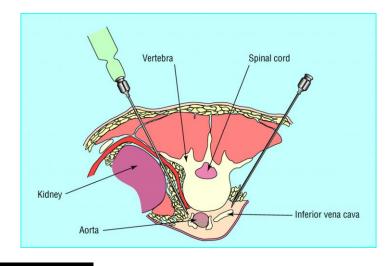
Case selection for Coeliac Plexus Nerve Block

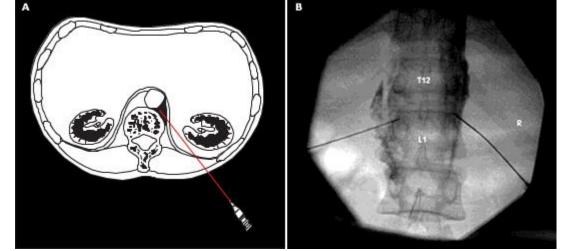
When, where and how?

Definitions

- Coeliac Plexus Block (CPB)
 - Injection of bupivacaine and steroid (triamcinolone)
- Coeliac Plexus Neurolysis (CPN)
 - Injection of bupivacaine and alcohol/ phenol

Case selection

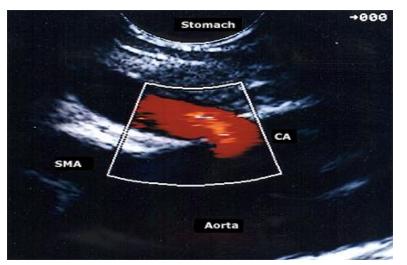

- Benign
 - Pattern of disease- neuropathic vs. obstructive
 - Alternatives
- Malignant
 - Histologically confirmed?
 - CPN or CPB?
 - One side or two?
 - Palliative care involvement



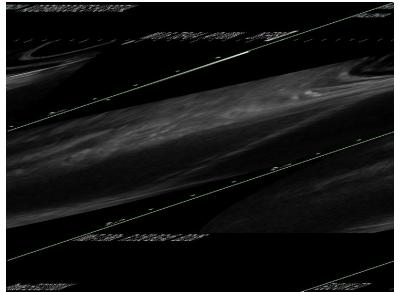
Percutaneous CPN/CPB

- Traditional method
- US or CT guidance
- Radiology time
- Complications i.e., paraplegia

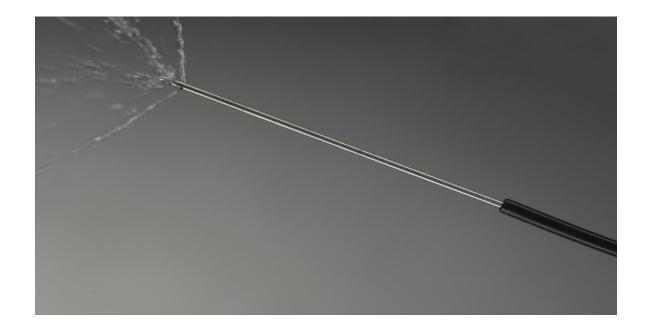
Endoscopic Ultrasound guided CPN/CPB


- Most direct access
- Minimises risk and complications
- Cost effective


Single operator and can be done as a day case



The procedure



CPN – 5-20 mls of 0.25% bupivacaine followed by 10 mls of 98% ethanol

CPB – Bupivacaine followed by steroid injection – Triamcinolone 80 mg in 5mls

Complications

CPB

- 7% complication rate from 481 procedures
- Transient diarrhoea and hypotension in 7 and 4% respectively
- Increased pain in 2%
- Infectious complications uncommon but reported in case reports

CPN

- 21% complication rate from 661 procedures
- Diarrhoea, hypotension in 7 and 4%
- Increased pain in 4%
- Major complications in 0.2% (visceral infarction, retroperitoneal abscess or bleeding, permanent paralysis, PE, bilateral diaphragm paralysis)

Pancreatic cancer

Pain is the most common disabling symptom

occurs in 80% overall 30-40% at diagnosis

Narcotic analgesics are the cornerstone of treatment

side effects can limit doses necessary

EUS guided CPN for pancreatic cancer

2 meta-analyses

• 72-80% pain relief

Early CPN vs. standard analgesic therapy

- Wyse et al 2011 RCT
- Significant improvement in pain scores and trend to lower opiate requirement

Key messages to take home:

- Adding EUS-FNB to ERCP gives better diagnostic sensitivity and reduces time to chemo
- EUS-BD is a useful adjunct in failed ERCP, and can be used instead of ERCP in selected cases
- EUS-GJ is an emerging treatment for GOO in fit patients and is superior to duodenal stenting or bypass surgery
- EUS-CPN should be considered early in patients with pancreatic cancer pain

Any questions?

Thank you

Ana Carmona Carrasco Advanced Clinical Practitioner HPB Medicine St James University hospital

