

Adaptive Radiotherapy and Pancreatic Cancer

Ganesh Radhakrishna

 I have been named on grants for research and project work from:

Cancer Research UK
Pancreatic Cancer UK
BRC

I am a clinical co lead for

GIRFT Pancreatic Cancer

National Pancreatic Cancer Audit

I have received honoraria from Servier and MSD in 2024.

Outline of session

 Principles of precision (adaptive) Radiotherapy practice in the UK & ART = Adaptive RT

- Chemo-Radiation Neoadjuvant (+ LAPC)
- SABR Locally advanced non metastatic and oligometastatic
- Hypofractionated schedules for Palliation

Future developments on the horizon
 Promise of newer technologies

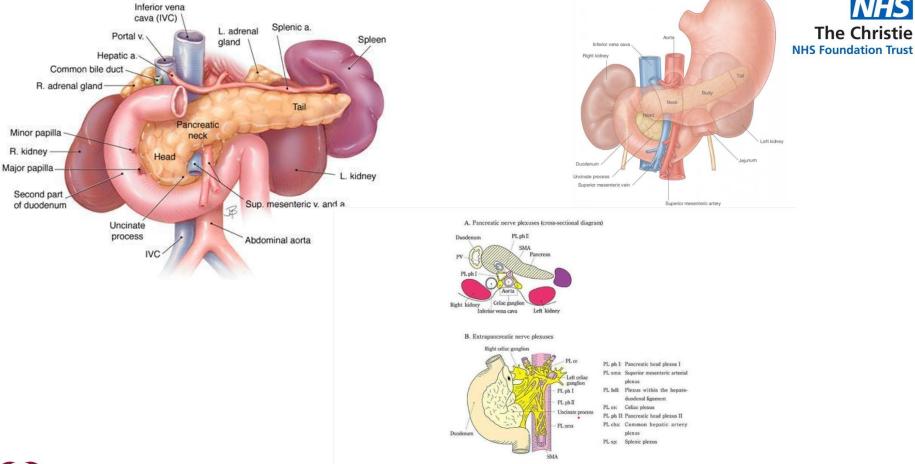
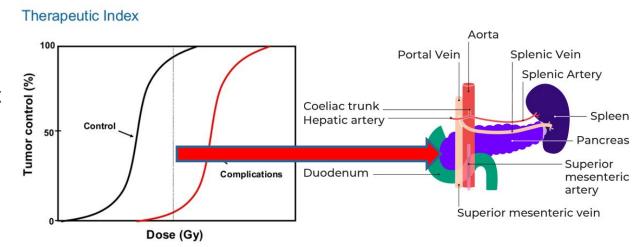


Figure 10. Nerves (yellow) serving the pancreas. The cross sectional image (A) emphasizes the location of the celiac ganglia of the autonomic system lateral to the aorta while (B) emphasizes the rich nerve plexus that connects these ganglia to the pancreas. SMA (superior mesenteric artery). PL (plexus). (Figure used with permission of the Japan Pancreas Association and the Kanehara publishers).

The Christie


Pancreatic RT challenges

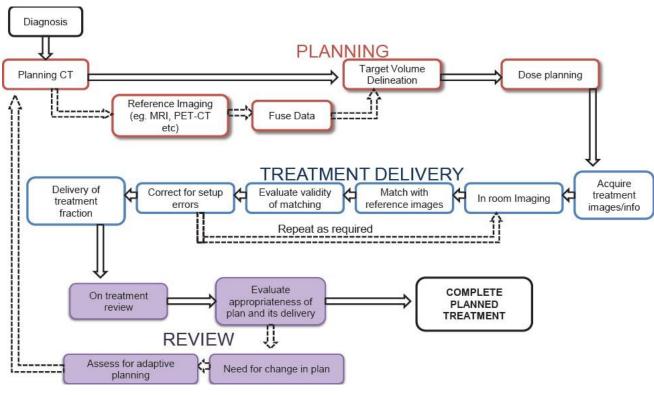
Target Volume delineation

Difficult to visualise
Imaging underestimates tumour

Organs at Risk
 Close proximity
 Narrow therapeutic index

Motion

Linear Accelerators



Patient pathway

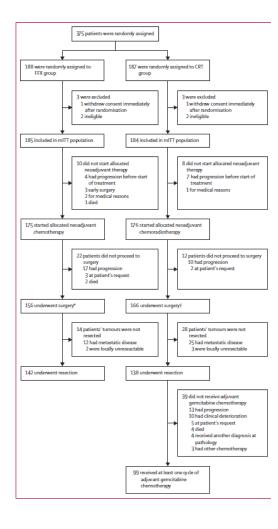
Neoadjuvant treatment

NEOADJUVANT RT

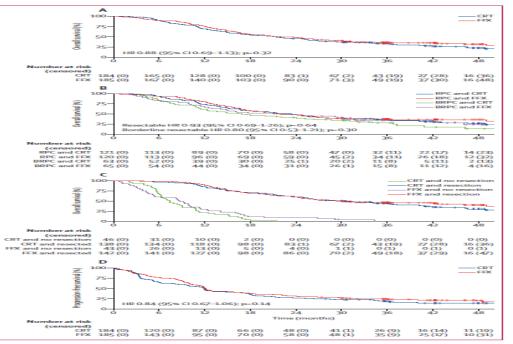
Role of NAT

Clinical Trial/	Clinical				No. of	Median		Outcomes				
Phase	Stage	Intervention	Comparator	Settings		Follow-Up	RO Rate	mPFS	mOS	OS Rate (year)	AE ≥ 3	
PREOPANC, 2020 ¹³ /III	RPC	Neoadjuvant three cycles of Gem + 36 Gy RT followed by surgery then followed by Gem ×four cycles	Upfront surgery followed by Gem × four cycles	Neoadjuvant	246	27 months	66% v 59% (OR 1.33, P = .54)	9.3 v 9.2 (HR 0.88, P = .52)	15.6 v 14.6 mo (HR 0.96, P = .83)		All (52% v 41%)	
	BRPC	_					79% v 13% (OR 24.2, P < .001)	(HR	17.6 v 13.2 mo (HR 0.62,P = .029)			
	All	_					71% v 40% (OR 3.61, P < .001)	(HR	16.0 v 14.3 mo (HR 0.78, P = .096		_	
PREOPANC, 2022 ¹⁴ /III	RPC/ BRPC	Neoadjuvant CRT (GEM) followed by surgery then followed by Gem	Upfront surgery then followed by Gem	Neoadjuvant	246	59 months	72% v 43% P < .001		15.7 v14.3 (HR 0.73, P = .025)	27.7% v 16.5% (3 years) 20.5% v 6.5% (5 years)	_	
Alliance 021101, 2016 ²⁸ /II	BRPC	Neoadjuvant four cycles of mFOLFIRINOX + CAP-CRT	None	Neoadjuvant	23		93% (14/ 15)		21.7 mo (95% Cl, 15.7 to not reached)	77% (95% CI, 0.62 to 0.97; 12 months) 55% (95% CI, 0.37 to 0.80; 18 months)	All 64%	
Alliance 021501, 2021 ²⁹ /II	BRPC	Eight cycles of neoadjuvant mFOLFIRINOX + surgery + four cycles of mFOLF0X6	Seven cycles of mFOLFIRINOX + SBRT or HIGRT + surgery + four cycles of mFOLFOX6	Neoadjuvant	126	27 or 31 months	42% v 25%		31 mo (95% CI, 22.2 to NE) v 17.1 (95% CI, 12.8 to 24.2)			
ESPAC-5F, 2020 ³⁰ /II	BRPC	Neoadjuvant GEMCAP or FOLFIRINOX or CRT (cap 50.4 Gy)	Upfront surge	ry Neoad	djuvant	90		3% v 15% (P = .721)		77% v 4 0.27, P < .0	0% (1 year, HR	

Neoadjuvant FOLFIRINOX versus neoadjuvant gemcitabinebased chemoradiotherapy in resectable and borderline resectable pancreatic cancer (PREOPANC-2): a multicentre, open-label, phase 3 randomised trial

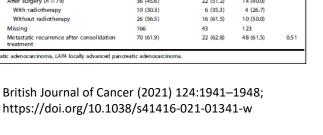

Quisette P Janssen*, Jacob L van Dam*, Marlies L van Bekkum, Bert A Bonsing, Hendrik Bos, Koop P Bosscha, Stefan A W Bouwense,
Lieke Brouwer-Hol, Anna M E Bruynzeel, Olivier R Busch, Peter-Paul L O Coene, Casper H J van Eijck, Jan Willem B de Groot, Brigitte C M Haberkorn,
Ignace H J T de Hingh, Tom M Karsten, Geert Kazemier, Marion B van der Kolk, Mike S L Liem, Olaf J L Loosveld, Saskia A C Luelmo, Misha D P Luyer,
Leonie J M Mekenkamp, J Sven D Mieog, Vincent B Nieuwenhuijs, Joost J M E Nuyttens, Gijs A Patijn, Hjalmar C van Santvoort, Martijn W J Stommel,
Eva Versteijne, Judith de Vos-Geelen, Roeland F de Wilde, Babs M Zonderhuis, Bronno van der Holt, Marjolein Y V Homst, Geertjan van Tienhovent,
Marc G Besselink†, Johanna W Wilmink†, Bas Groot Koerkamp†, for the Dutch Panar eatic Cancer Group‡

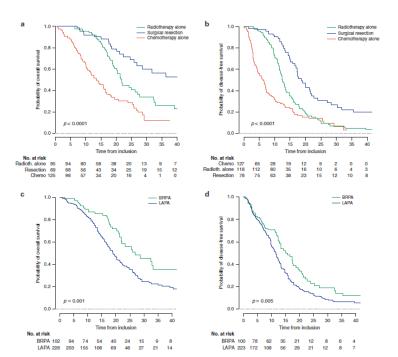
Lancet Oncol 2025


Published **Online** September 10, 2025 https://doi.org/10.1016/ S1470-2045(25)00363-8

See Online/Comment https://doi.org/10.1016/ S1470-2045(25)00421-8

	Events (n)/p	satients (N)						Unstratified hazard ratio (95% CI)	p value	Pimerato value
	FFX group	CRT group								
Age										0.36
<65	54/88	47/68	_	-				0.79 (0.54-1.17)	0.25	
≥65	71/97	86/116		_	—	_		1.00 (0.73-1.38)	0.98	
Sex										0.71
Male	76/115	63/93			-	_		0.95 (0.68-1.32)	0.74	
Female	49/70	71/91						0-85 (0-53-1-21)	0.39	
Resectability					l l					0.55
Resectable	80/120	85/121			-	_		0.93 (0.69-1.26)	0.64	
Borderline resectable	45/65	48/63	_	-	_			0-80 (0-53-1-21)	0.30	
WHO status										0.23
0	81/112	80/110		_	- •	_		1.00 (0.74-1.37)	0.99	
1	44/73	53/74		_	-			0.75 (0.50-1.12)	0.15	
CA 19-9, U/mL										0.34
<500	84/135	86/122			-			0-84 (0-62-1-13)	0.24	
≥500	35/40	43/53						1.04 (0.67-1.63)	0.86	
Tumour size, mm										0.69
<30	58/87	52/71			-	_		0.90 (0.62-1.31)	0.60	
≥30	49/74	61/81	-		-			0-82 (0-57-1-20)	0.31	
Location										0.38
Head	104/154	117/158		_				0.85 (0.65-1.11)	0.23	
Other	21/31	16/26			-			1.15 (0.60-2.23)	0.67	
All patients	125/185	133/184			■—			0.89 (0.70-1.13)		
			0.5	0.75	1	1.5	2.0	-		
				Favour	s FFX Favou	→ rs CRT				


ARTICLE Clinical Study


Role of FOLFIRINOX and chemoradiotherapy in locally advanced and borderline resectable pancreatic adenocarcinoma: update of the AGEO cohort

Edouard Auclin^{1,2}, Lysiane Marthey³, Raef Abdallah³, Léo Mas⁴, Eric Francois⁵, Angèlique Saint⁵, Antonio Sa Cunha⁶, Angèlique Vienot⁷, Thiery Lecomte⁸, Vincent Hautefeuille⁹, Christelle de La Fouchardière (D¹⁰, Matthieu Sarabi¹⁰, Feryel Ksontini¹¹, Julien Forestier¹², Romain Coriat¹³, Emmanuelle Fabiano¹⁴, Florence Leroy¹⁵, Nicolas Williet (D¹⁶), Jean-Baptiste Bachet⁴, David Tougeron¹⁷ and Julien Taieb

	N (%)	Whole population $N = 330$	BRPA N=10	12 LAPA N = 226	5 p
Objective radiological response (RECIST 1.1)	Complete response	11 (3.7)	1 (1.1)	10 (4.8)	0.18
	Partial response	77 (25.8)	27 (30.3)	50 (24.2)	
	Stable disease	152 (51.0)	48 (53.9)	102 (49.3)	
	Progression	58 (19.5)	13 (14.6)	45 (21.7)	
Treatment after FOLFIRINOX	Yes	201 (61.5)	69 (66.7)	129 (57.1)	0.20
	Chemoradiotherapy alone	120 (36.4)	26 (25.5)	94 (41.6)	< 0.000
	Surgery	79 (23.9)	43 (42.1)	35 (15.5)	
	With radiotherapy	33 (41.8)	17 (39.5)	15 (42.9)	0.77
	Without radiotherapy	46 (58.2)	26 (60.5)	20 (57.1)	
	Surgical exploration with no resection	12 (3.6)	6 (5.9)	6 (2.6)	0.14
Post-FOLFIRINOX radiotherapy		153 (46.6)	43 (42.6)	109 (48.4)	0.34
Dose (Gy)	Median (range)	50 (49-54)	50 (50-54)	50 (48-54)	0.85
Post-FOLFIRINOX surgical resection		N = 79	N=43	N = 35	
	R0 resection	59 (74.7)	32 (74.4)	25 (71.4)	0.90
	ypT0N0	7 (8.9)	3 (7.0)	4 (11.8)	0.69
	Post-operative complication	30 (40.5)	17 (39.5)	12 (40)	0.97
	With radiotherapy	12 (38.7)	6 (35.3)	5 (38.5)	
	Without radiotherapy	18 (41.9)	11 (42.3)	7 (41.2)	
Recurrence	After radiotherapy alone ($n = 120$)	76 (63.3)	12 (46.1)	64 (68.1)	0.03
	After surgery (n = 79)	36 (45.6)	22 (51.2)	14 (40.0)	
	With radiotherapy	10 (30.3)	6 (35.3)	4 (26.7)	
	Without radiotherapy	26 (56.5)	16 (61.5)	10 (50.0)	
	Missing	166	43	123	
	Metastatic recurrence after consolidation treatment	70 (61.9)	22 (62.8)	48 (61.5)	0.51

BRPA borderline resectable pancreatic adenocarcinoma, LAPA locally advanced pancreatic adenocarcinoma.

Surgical Outcomes Following Neoadjuvant Treatment for Locally Advanced and Borderline Resectable Pancreatic Ductal Adenocarcinoma

Kai Tai Derek Yeung, PhD, FRCS,*† Sacheen Kumar, PhD, FRCS,*‡ David Cunningham, MD, FRCP, FMedSci, OBE,* Long R. Jiao, MD, FRCS,*† and Ricky Harminder Bhogal, PhD, FRCS*‡

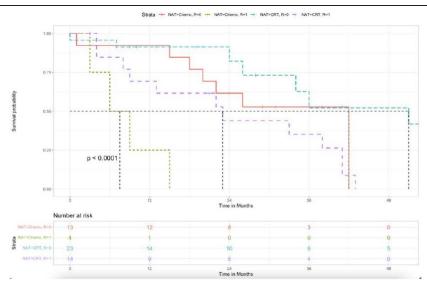


FIGURE 2. Kaplan–Meier plot: R0 versus R1 median overall survival: chemo R1 (green) 7.5 months versus CRT R1 (purple) 23 months versus Chemo R0 (red) 42 months versus CRT R0 (blue) 51 months, P < 0.0001.

Neoadjuvant (c)RT

NAT for borderline resectable disease

Need for consistent radiological assessment PACT – UK Project

Precision Oncology

Refining patient selection for benefit for RT

Locally advanced non metastatic unresectable

CONSOLIDATION RT

Clinical Trial/Phase	Clinical Stage	Intervention	Comparator	Settings	No. of Patients	Median Follow- Up	Surg. (rate)	mPFS	mOS	OS Rate (year)	AE ≥ 3
LAP-07, 2016 ³¹ /III	LAPC	Gem or Gem/erlotinib followed by CRT (Cap): 54 Gy in 30 fractions with Cap 800 mg/m ² twice a day	Gem or Gem/ erlotinib	Induction chemo- RT	269	36.7 months	N = 18 (4%; R0 = 8)	9.9 v 8.4 months (HR 0.78, P = .06)	15.2 v 16.5 months (HR 1.03, P = .83)		Hematologic toxicity (3.9% <i>v</i> 10.4%) Nonhematologic toxicity (23.1% <i>v</i> 19.8%)
		Gem/erlotinib Gem: 1,000 mg/m² once every 4 weeks once daily (3-week on/1- week off) × four cycles Erlotinib 100 mg daily. Maintenance 150 mg once daily	Gem	Induction chemotherapy	442	35.9 months		6.5 v 7.8 months (HR 1.12, P = .26)	11.9 v 13.6 months (HR 1.19, P = .09)		Hematologic toxicity (40.3% <i>v</i> 34.1%): anemia (6.2% <i>v</i> 2.3%) Nonhematologic toxicity (41.0% <i>v</i> 40.0%): diarrhea (6.6% <i>v</i> 1.4%), acne (3.3% <i>v</i> 0%)
SCALOP, 2013, 2013, ³² and 2017 ³³ /II	LAPC	Gem-Cap × three cycles followed by CAP-RT	Gem-Cap × three cycles followed by Gem-RT	Induction chemotherapy- RT	114	10.9	N = 5 (4%; CAP-RT = 2, Gem-RT = 3), all RO	12 v 10.4 (HR 0.6, P = .12)	17.6 v 14.6 months (HR 0.68, P = .185)		All (12% v 37%) Hematologic (0% v 18%) Nonhematologic (0% v 26%) GI (0% v 16%)
LAPC-1, 2020/II	LAPC	Eight cycles of FOLFIRINOX followed by SRBT (40 Gy, five fractions)	Eight cycles FOLFIRINOX	Induction chemotherapy- RT	50 (SRBT = 39)	39 months	N = 7 (14%), all R0		18 v 5 months (P < .001)	43% v 6.5% (3 years, P = .03)	SRBT group 10%
LAPACT, 2020 ³⁴ /II	LAPC	Gem/NabP × six cycles followed by investigator's choice: continue chemotherapy, CRT, or surgery	None	Induction	106		N = 17 (16%) R0 = 7, R1 = 9	10.9 months (90% CI, 9.3 to 11.6)	18.8 months (90% CI 15.0 to 24.0)		Neutropenia: 33% Anemia: 11% Fatigue 10%
NEOLAP- AIO-PAK- 0113, 2020 ³⁵ /II	LAPC	Two cycles of Gem/Nab followed by four cycles of FOLFIRINOX	Four cycles of Gem/NabP	Induction	130	24.9 months	43.9% (29/ 66) v 35.9% (23/64), OR 0.72, P = .38	9.5 v 7.7 months (HR 0.75, P = .18)	20.7 v 18.5 months (HR 0.86, P = .53)	(2 years,	ALL: 53% v 55% Neutropenia: 24% v 28% Nasua/vomiting: 12% v 3% Cholangitis: 11% v 9%

SABR

Stereotactic ablative body radiotherapy (SABR) refers to the precise irradiation of an image-defined extra-cranial lesion with the use of high radiation dose in a small number of fractions

UK SABR Consortium guidelines 2013

Potential benefits of SABR

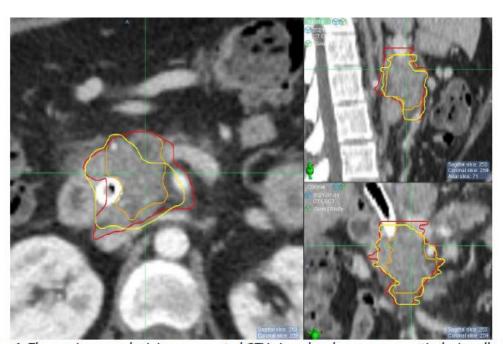
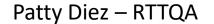
- Longer freedom from treatment time / PFS
 Suker et al. EClinicalMed 17(2019)
- Improved tolerability / trend to improved OS
 CRISP metanalysis, Tcehelebi et al 2020
- Reduction in number of treatment visits Jones, C.M., et al. 2020
- Improved local control / symptom control
 - Tangible benefit in reduction in pain
 Herman et al. Cancer April 2015
- Effects of SABR beyond primary disease control Griffin et al. IJROBP 2020. 107(4); 766-778

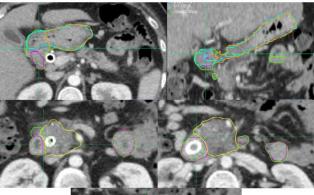
Roll out

NHS E approval process

- Approved protocol and workshops by RCR-SABR_C-RTTQA
- Test case reviewed for outlining and plan by RTTQA team (2 clinicians and physics independently).
- Benchmarked against a pre defined standard
- First case treated in centre independently peer reviewed by RTTQA team
- · Ongoing review as indicated
- Mentoring
- > 10 centres completed or partial approval

QA process


Figure 1: The maximum and minimum accepted GTVp in red and orange, respectively; in yellow the corresponding submission. In magenta the submitted duodenum

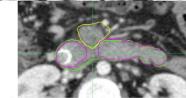
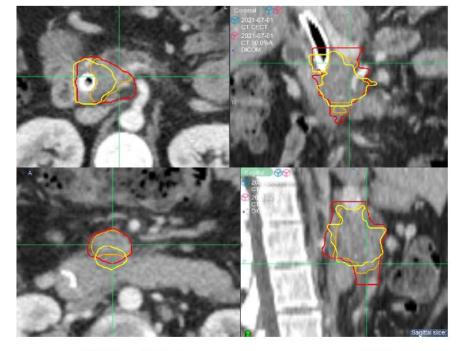
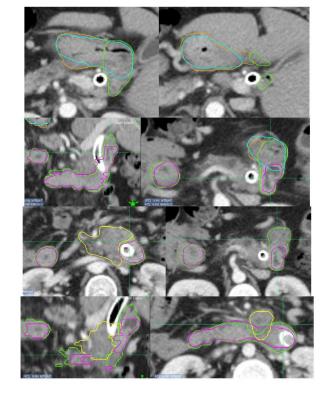
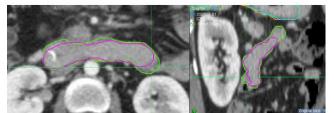
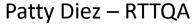




Figure 5: In green and orange the Duodenum and Stomach gold standards, respectively; in magenta and cyan the corresponding submission. In yellow the submitted GTVp

3. Conclusion

Overall outlining review decision: Acceptable variation from the required specification*




<u>Figure 6: In green and orange the Duodenum and Stomach gold standards, respectively; in magenta</u> and cyan the corresponding submission. In yellow the submitted GTVp

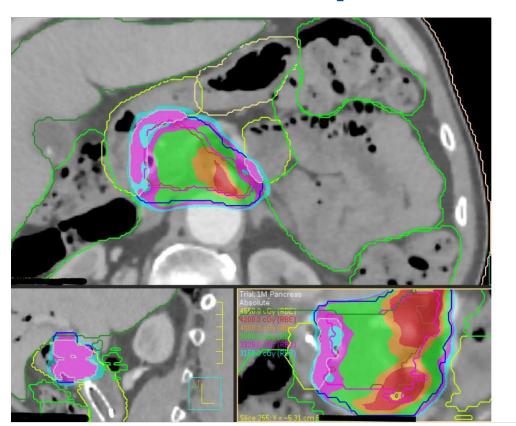
3. Conclusion

Overall outlining review decision: Unacceptable variation from the required specification $\ensuremath{^{**}}$

Farmer David first person in Wales to receive high-tech cancer treatment

Christie, which provided advice and feedback.

Some of the team who worked on introducing SABR for cancer of the pancreas. L-r: Sophie Jenkins, interim head of service, radiotherapy; Mark Stewart, CT radiographer lead; Anna lles, interim Head of service - radiotherapy; Adam Selby, SABR lead radiotherapy physics scientist; Owen Nicholas, consultant clinical oncologist; Rhys Jenkins, head radiotherapy physics technologist; Lucy Faulkner, deputy head, radiotherapy physics technologists; and Tracy Lewis, pre-treatment radiotherapy lead.


"We've been working on it for a number of years, and we are now comfortable we can deliver this treatment safety and effectively," said Dr Nicholas. "This is really complex radiotherapy, so it has been a huge team effort to get to this point."

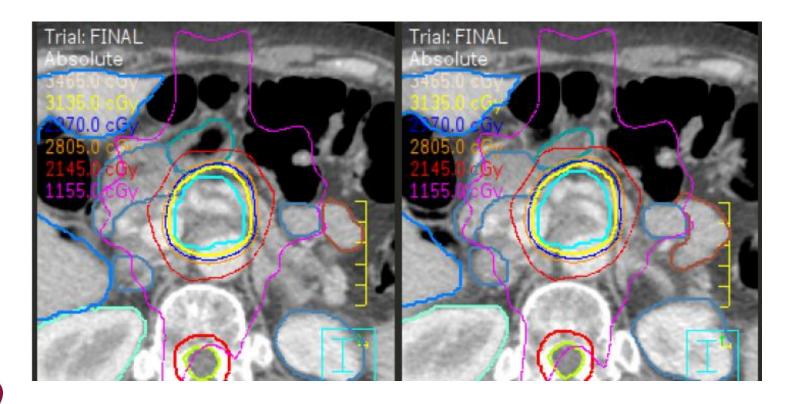
Advanced radiotherapy physics technologist Lucy Faulkner said that as part of its preparations, the SWWCC had been mentored by The

SABR plan

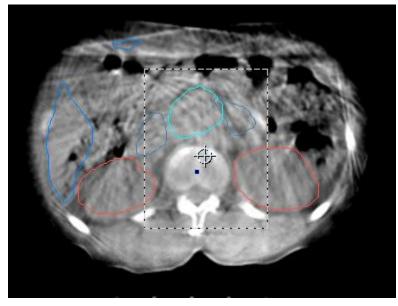
4550.0cGy (127%) 4200.0cGy (120%) 4000.0cGy (114%) 3500.0cGy (100%) 3325.0cGy (95%) 3150.0cGy (90%)

Slide courtesy Dr. Owen Nicholas, Swansea

Pancreatic SABR


ADAPTIVE RT (ART)

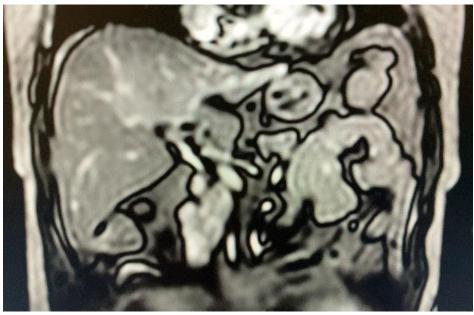
SABR pancreas



SABR plan and on treatment verification



Node and primary pancreas SABR



Physiological motion in BH GIFs

bffE coronal cine in EEBH showing large peristaltic motion of pylorus and duodenum (fasted 2+hrs patient)

Courtesy Mairead Daly

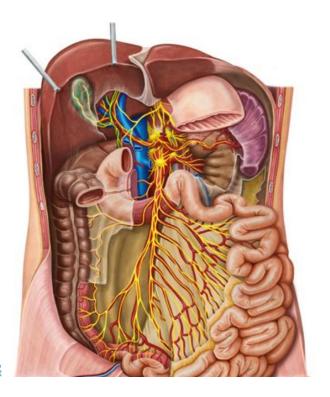
CLINICAL INVESTIGATION

A Multi-Institutional Phase 2 Trial of Ablative 5-Fraction Stereotactic Magnetic Resonance-Guided On-Table Adaptive Radiation Therapy for Borderline Resectable and Locally Advanced Pancreatic Cancer

Parag Jitendra Parikh, BSE, MD,* Percy Lee, MD,† Daniel A. Low, PhD,† Joshua Kim, PhD,* Kathryn E. Mittauer, PhD,† Michael F. Bassetti, MD, PhD,† Carri K. Glide-Hurst, PhD,† Ann C. Raldow, MD, MPH,† Yingli Yang, PhD,† Lorraine Portelance, MD,* Kyle R. Padgett, PhD,* Bassem Zaki, MD,** Rongxiao Zhang, PhD,** Hyun Kim, MD,† Lauren E. Henke, MD,† Alex T. Price, MS,†† Joseph D. Mancias, MD, PhD,† Christopher L. Williams, PhD,† John Ng, MD,† Ryan Pennell, PhD,† M. Raphael Pfeffer, MD,† Daphne Levin, PhD,† Adam C. Mueller, MD, PhD,† Karen E. Mooney, PhD,† Patrick Kelly, MD, PhD,** Amish P. Shah, PhD,** Luca Boldrini, MD, PhD,*** Lorenzo Placidi, PhD,*** Martin Fuss, MD,†† and Michael D. Chuong, MD

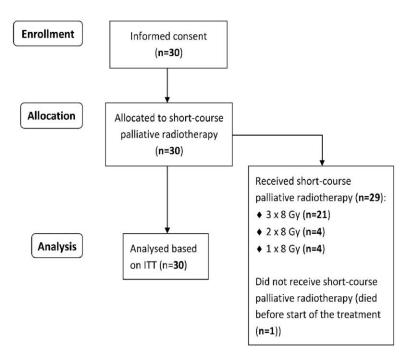
*Henry Ford Health — Cancer, Detroit, Michigan; †City of Hope National Medical Center, Los Angeles, California; †Department of Radiation Oncology, University of California, Los Angeles, California; †Miami Cancer Institute, Baptist Health South Florida, Miami,

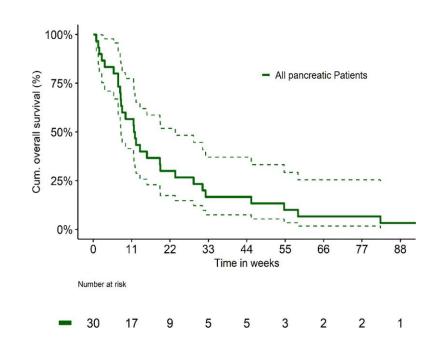
- •Grade 3 toxicity = 0
- •1 year (from diagnosis) PFS= 80.1%; LC = 90%;


OS = 93.9%

PALLIATIVE (A)RT

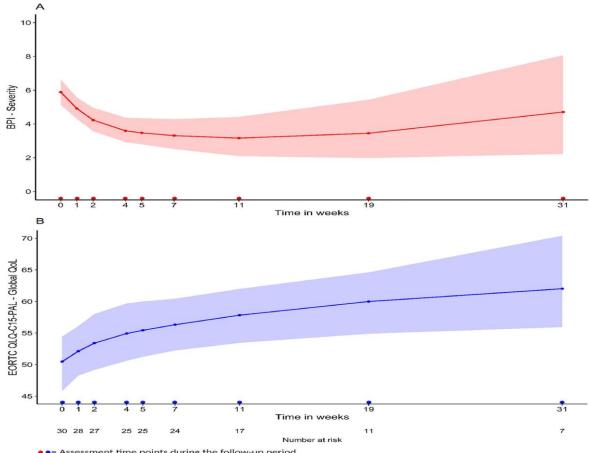
Palliative radiotherapy for coeliac plexus pain


- •70% of patients with pancreatic cancer experience severe pain often due to coeliac plexus involvement
- •The coeliac plexus is a nerve network attached to the abdominal aorta
- •Major detriment on quality of life and often refractory to standard analgesia
- •Current options for pain control include analgesia (typically high doses of opiates) or coeliac plexus block/neurolysis for refractory pain
- •Small trials have suggested radiotherapy may be effective in improving pain but this is not currently frequently used in the UK

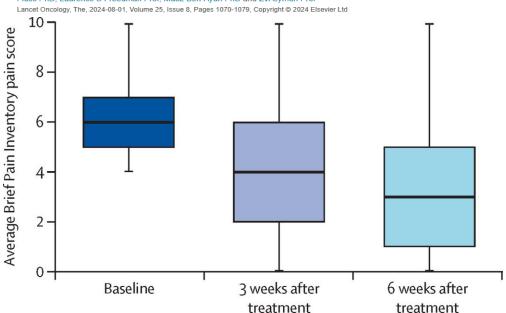


Impact of Short-Course Palliative Radiation Therapy on Pancreatic Cancer-Related Pain: Prospective Phase 2 Nonrandomized PAINPANC Trial C. Paola Tello Valverde, MSc, Gati

Ebrahimi, MD, MBA, Mirjam A. Sprangers, PhD, Konstantinos Pateras, PhD, Anna M.E. Bruynzeel, MD, PhD, Marc Jacobs, PhD, Johanna W. Wilmink, MD, PhD, Marc G. Besselink, MD, PhD, Hans Crezee, PhD, Geertjan van Tienhoven, MD, PhD, Eva Versteijne, MD, PhD International Journal of Radiation Oncology, Biology, Physics Volume 118 Issue 2 Pages 352-361 (February 2024)



• •= Assessment time points during the follow-up period


FULL TEXT ARTICLE

Celiac plexus radiosurgery for pain management in advanced

cancer: a multicentre, single-arm, phase 2 trial 🔊 🕾

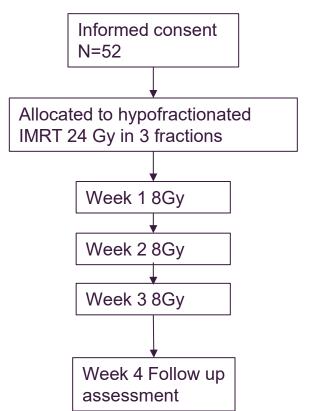
The Christie **NHS Foundation Trust**

Yaacov R Lawrence MBBS FASTRO, Marcin Miszczyk MD PhD, Laura A Dawson MD, Dayssy Alexandra Diaz Pardo MD, Artur Aquiar MD, Dror Limon MD, Raphael M Pfeffer MBBS, Michael Buckstein MD PhD, Aisling S Barry Prof. Tikva Meron PhD, Adam P Dicker Prof, Jerzy Wydmański MD PhD, Camilla Zimmermann MD PhD, Ofer Margalit MD PhD, David Hausner MD, Ofir Morag MD, Talia Golan Prof, Galia Jacobson MD, Sergey Dubinski PhD, Teo Stanescu PhD, Ronen Fluss PhD, Laurence S Freedman Prof, Maoz Ben-Ayun PhD and Zvi Symon Prof

	Mean (SD)	Median (IQR)	p value
Opioid use on day of treatment, intravenous morphine equivalent, mg *†	54·0 (68·9); n=90	30·0 (11·6 to 65·4)	
Opioid change at 3 weeks compared with baseline	0·15 (31·98); 95% CI −6·74 to 7·05; n=86	0.00 (-10.38 to 8.85)	0.965
Opioid change at 6 weeks compared with baseline	-16·67 (48·69); 95% CI -28·45 to -4·89; n=69	-5.00 (-22.30 to 5.00)	0.006

The ROYAL MARSDEN NHS Foundation Trust

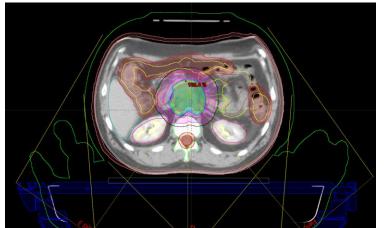
Single arm Phase 2


Primary endpoint

 Proportion of patients with a reduction in pain ≥ 2 points (BPI score) at 4 weeks

Secondary endpoints

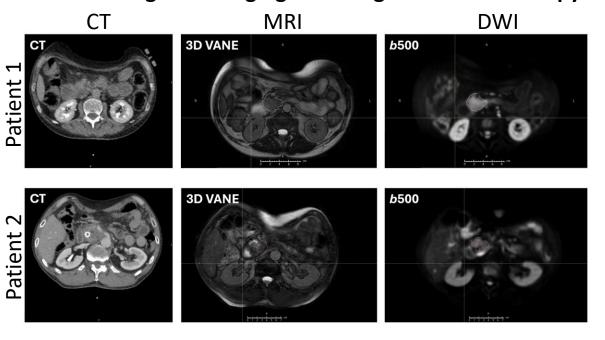
- Mean reduction in morphine milligram equivalents
- Change in Patient's Global Impression of Change Score (PGIC)
- Acute toxicity
- Overall survival


3 centres: The Royal Marsden The Christie Clatterbridge

Research & Innovation

PBT ART

PREFER study – CI Rob Chuter



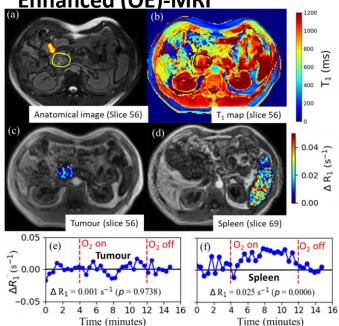
Research and Innovation

FUNCTIONAL ART

Improving Tumour Conspicuity with Diffusion Weighted Imaging for MR-guided Radiotherapy

Examples showing that Diffusion weighted imaging (DWI) could provide improved definition of lesion to improve contouring confidence for treatment planning and adaption.

OE MR – CI Laura Forker, Michael Dubec


Assessing Tumour

Hypoxia

with Oxygen-

Enhanced (OE)-MRI

ΔR₁ proportional to OE-MRI oxygen delivery:

Example shows increased oxygen in spleen compared to pancreas tumour suggesting poorly oxygenated tumour.

During pancreatic cancer RT, changes on MRI The Christie Christie

- Evaluate MR imaging developed to detect surrogates of microbiome changes during RT
- 2. Correlate changes in the gut microbiome to treatment vs dietary changes
- 3. Correlate (sustained) changes in the gut microbiome to patient outcomes following pancreatic RT (incl toxicity)
- 4. Generate data to propose a study of dietary changes to support improved gut health (and outcomes) over RT

Summary of key points

- Recognise the role and indications of radiotherapy for PDAC
- Consider radiotherapy as treatment option
- Awareness of radiotherapy innovation and future research

Acknowledgements

- Patients and carers
- PCUK team
- Pancreatic Research Group
- RTTQA (Patty Diez)
- UK HPB Medical and Clinical Oncology community
- PACT UK Team
- MR-Linac research team and Momentum/ MR Bio/ Mid Section trials team
- Pancreatic Technical RT teams at the Christie, Royal Marsden and Leeds

